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1 INTRODUCTION

Many choices individuals make are discrete. Consider, for example, the decision how to get to

the university this morning. People can take the bicycle, the bus or maybe the underground.

Also the route that you have taken can be considered as a discrete decision: there are many

routes possible but you can only take one.

Standard micro-economics is mostly concerned with the analysis of continuous choices.

For example, it may aim to answer the question what is the impact of an increase in gasoline

prices on the the amount of kilometres travelled. Or, it may investigate the impact of envi-

ronmental taxes on the productivity of firms. The convenient characteristic of continuous

choices is that marginal changes in behaviour can be analysed in a straightforward manner.

For example, one can estimate that when fuel prices change by 10%, the demand for cars

may decrease by 2%. Welfare effects can be analysed assuming that individuals maximise a

pre-defined utility function with respect to the chosen quantity of the good.

This syllabus aims to introduce a framework for discrete consumer choices. Hence, this

means that some explanatory variable, either continuous or discrete, influences a discrete
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THE RANDOM UTILITY FRAMEWORK

dependent variable. For example,

• What are the most important characteristics that determine where people want to

live?

• What factors influence the selection of a seaport for a carrier?

• What is the impact of the weather on route choice?

• How do taxes influence the location choices of multinational enterprises?

• What is the role of environmental regulation on bankruptcy?

• What is the impact of eye colour on partner choice?

and many more examples can be given.

Analysing marginal changes in behaviour seems a hard thing to do for discrete choices,

because either one chooses a certain alternative, or one does not. Moreover, discrete choices

can be both binary – where a person chooses between two alternatives – or multinomial

– where a person chooses between many alternatives (e.g. mode of transport).1 This issue

is resolved by assuming that the utility function is random. The so-called random utility

framework in Section 2 is able to deal with discrete binary and multinomial choices. Hence,

it is possible to analyse marginal changes in behaviour by modelling the probability that

someone chooses an alternative.

Section 3 proceeds by discussing several ways to estimate binary choices: namely, the Linear

Probability Model (LPM), Logit and Probit models, and generalisations of those, such as

Nested Logit.

Section 4 extends the approach to a multinomial setting and explains when Multinomial

Logit, Conditional Logit and Poisson Models can be applied.

All models rely on data. Data can be either gathered in a experimental setting, where

respondents are confronted with hypothetical choices, or one may rely on data on realised

‘revealed’ choices. Section 5 then deals with the distinction between stated preference and

revealed preference data and discusses the advantages and disadvantages.

Section 6 provides a summary.

2 THE RANDOM UTILITY FRAMEWORK

2.1 MAKING CHOICES

Ben-Akiva and Lerman (1985) argue that a choice can be seen as an outcome of a sequential

decision-making process that includes the following steps:

1Instead of binary or multinomial decisions, one sometimes refers to dichotomous and polytomous

decisions.
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1. Definition of the choice problem;

2. Generation of alternatives;

3. Evaluation of attributes of the alternatives;

4. Choice;

5. Implementation.

Hence, for each choice it is important to know the possible alternatives and their attributes.

The agent can be an individual, a firm, a household or a government body.

Let’s consider a simple setting where people have to make a discrete decision (the choice)

between two routes, A and B (the alternatives). We observe in a hypothetical dataset that

only the travel time t (the attribute) between routes A and B is different. Hence, intuitively,

the decision to choose a route depends on the difference in time. However, suppose that

people have certain (unknown) preferences for certain routes (e.g. some like to take a more

scenic route); those characteristics are denoted by εA and εB .

Hence, to summarise the above setting in a model, one could write:

Pr(Y = A) = f
(

β(tB − tA)+ (εA −εB )
)

, (2.1)

where Pr(Y = A) denotes the probability that someone will choose route A and f (·) is an

increasing function in its attribute(s), f ′(·) > 0. This probability is impacted by the difference

in the travel time between route A and B . Note that in this formulation β is positive, because

the higher the travel time of route B , the higher the probability to choose A.

An important feature of the above model is that the probability cannot be larger than one

or smaller than zero. Hence, the probability to choose route B is given by: Pr(Y = B) =

1−Pr(Y = A). This also means that standard linear regression techniques (i.e. Ordinary

Least Squares) may give an unrealistic answer. For example, for certain values of the travel

time, it may predict that the probability is higher than 1 or lower than 0.

2.2 MAXIMISING UTILITY

How does equation (2.1) relate to people maximising their utility? Let’s consider again two

routes and an individual i that has the following utility functions:

Ui A =VA(tA)+εi A, (2.2)

Ui B =VB (tB )+εi B , (2.3)

where Ui A and Ui B are the utilities received from a certain alternative, VA(tA) and VB (tB )

are referred to as the deterministic utilities, which a person receives from observed char-
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acteristics (in this case; travel time) of the alternatives.2 In reality one often observes that,

while most people will take the shortest route A, still some people will take the longer route

B . The reason is that people may have so-called idiosyncratic or unobserved preferences

for a certain route, denoted by εi A and εi B .3 For example, some people may particularly

like the unobserved scenic features of route B , or prefer the more quiet route B . Hence,

while the agent is assumed to know his or her utility function, the researcher does not.

The idiosyncratic term ε aims to capture this (Train, 2003).4 Like in a standard regression

framework E[εi A] = E[εi B ] = 0 and the ε’s are assumed to be independently and identically

distributed. Moreover, they are assumed to be uncorrelated to the deterministic utilities.

To determine the probability to choose route A, (2.2) and (2.3) are combined into (Train,

2003):

Pr(Y = A) = Pr(Ui A >Ui B ),

= Pr(VA(tA)−VB (tB ) > εi B −εi A),

=

∫∞

εi A=−∞

∫∞

εi B=−∞

I (VA(tA)−VB (tB ) > εi B −εi A) f (εi A) f (εi B )dεi Adεi B .

(2.4)

The second line in the above equation indicates the probability to choose A, which depends

directly on deterministic utility and on idiosyncratic preferences. Hence, if one observes

that people make a certain choice in the data, this relates to attributes of the alternatives and

the idiosyncratic tastes. In the third line of (2.4) the indicator function I (·) equals one when

the condition holds true. That is, I (·) = 1 if the values of ε and the value of the travel time

difference, induces the agent to choose route A; and I (·) = 0 if the values of ε, combined

with the travel time difference, induces the agent to choose B . f (·) is the (joint) density

function of the idiosyncratic preferences. Hence, the second line in equation (2.4) states that

the probability is an integral, i.e. an integral of an indicator for the outcome of the choice

process over all possible values of the unobserved factors (Train, 2003).

Hence, to be able to calculate the probability in (2.4), one has to deal with two issues:

1. What is the density distribution of the ε’s?

2. What is the exact functional form of the deterministic utility V (·)?

Let’s re-emphasise that the ε’s are fundamentally unobserved by the researcher. Hence, one

has to make an assumption on the distribution of those that cannot be tested empirically.

McFadden (1973) proposes to assume that idiosyncratic preferences are Extreme Value Type

I distributed. Figure 2.1 displays an example of such a distribution. As one may observe there

2It may seem that the above utility function is not directly related to a setting where consumers maximizing

utility subject to a budget constraint. However, Appendix A.1 shows that this can be easily accommodated

within the current framework.
3The term ‘idiosyncrasy’ originates from Greek ‘idiosynkrasía’ – ‘a peculiar temperament or habit’
4Note that this Section focuses on the random utility framework. However, the application to profits of

firms, rather than utility of people, is straightforward. One would then have a random profit framework, which

implies that profits consist of a part observed by the researcher and an unobserved idiosyncratic part. See

Section 4 for an application.
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Figure 2.1 – THE EXTREME VALUE TYPE I DISTRIBUTION

is a lot of similarity with a normal distribution, but the distribution is positively skewed.

Why is using this particular distribution so useful? Let’s consider again equation (2.4). Train

(2003) then shows that:

Pr(Y = A) = Pr(VA −VB > εi B −εi A),

=

∫∞

εi A=−∞

∫∞

εi B=−∞

I
(

εi A −εi B >−(VA −VB )
)

f (εi A) f (εi B )dεi Adεi B ,

=

∫∞

εi A=−∞

∫∞

εi B=−∞

f (εi A) f (εi B )dεi Adεi B

= 1−F (−(VA −VB ))

=
eVA

eVA +eVB

=
1

1+eVB−VA
.

(2.5)

The last line in the above equation is convenient because if one can obtain estimates for

the difference between deterministic utilities VA and VB , one may simply calculate the

probabilities. Moreover, one can easily verify that the predicted probability is always between

one and zero, and if VA and VB are the same, the predicted choice probability is 0.5. The fact

that one just need numbers on the utility differential VA −VB implies that there is a so-called

closed form for the choice probabilities.

Daniel McFadden. In 2000 James Heckman and Daniel McFadden were jointly awarded

the Nobel Prize in Economics for their contributions to the analysis of data on individuals

and firms. While James Heckman’s contribution mainly related to his solution to deal

with sample selection, McFadden was lauded for developing models to analyse discrete

choice data. He particularly pioneered in developing the theoretical basis for discrete

choice.
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The second issue if one aims to calculate the probability to choose a certain route is the

functional form for the deterministic utility. In principle, one may choose any functional

form; however, not every functional form of the deterministic utility is related to a (indirect)

utility function with a budget constraint (see Appendix A.1). Let’s assume linearity and

include more relevant characteristics of a route:

Ui A =αA +βp A +κtA +εi A, (2.6)

Ui B =αB +βpB +κtB +εi B , (2.7)

where p A and pB are the travel costs to take route A and B respectively; and αA, αB , β, and

κ are parameters to be estimated. Hence:

Pr(Y = A) =
1

1+e(αB−αA)+β(pB−p A)+κ(tB−ta )
. (2.8)

Attentive readers will note that probabilities only depend on the differences in attributes of

the two choices. In other words, it is not the absolute time it takes to take route A or B , but

only the difference in travel time is what matters.

The value of time. An important concept in transport economics is the value of time

(VOT), which indicates how much a person is willing to pay to reduce travel time with one

hour, holding utility constant. In many large transport projects, such as the construction

of a new road, it is clear what the costs are, but how to determine the benefits? The VOT

can be used to predict the benefits, as the benefits of the transport projects would be

roughly equal to the number of people using the new road multiplied by their travel time

savings and their value of time.

Let denote a change by ∆. Using the utility function (2.6), and holding utility constant,

we have:

∆Ui a =β∆p A +κ∆tA +∆εi A = 0

−β∆p A = κ∆tA,

∆p A =−
κ

β
∆tA.

(2.9)

Note that ∆εi A = 0 in the first line of the above equation, because E[εi A] = 0. Suppose

that time is measured in hours. Let’s evaluate the value of a one hour reduction in travel

time, so ∆tA =−1. Hence:

∆p A =
κ

β
. (2.10)

Equation (2.10) is very convenient because it can be estimated from the data and has

direct policy implications. However, the applied utility function does not include income

or a budget constraint and seems therefore somewhat odd. Appendix A.1 shows the

derivation of the VOT using a more standard utility function.
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Many studies have attempted to measure the Value of Time using choice experiments. A

study for the Netherlands finds an average VOT for commuters ofe9.25 (Kouwenhoven

et al., 2014). It is considerably higher for business trips: e26.25, while somewhat lower

for social purposes: e7.50. Also income is strongly related to the VOT. Abrantes and

Wardman (2011) find that the when income rises by 1%, the VOT increases by 0.9%.

Koster and Koster (2015) confirms that VOTs are much higher for higher incomes.

Note that the VOT is just one example of a trade-off between costs/benefits of an alterna-

tive and a certain characteristic (i.e. time). Other examples are the Value of Reliability, or

the Value of a Statistical Life (see Application 3). The latter is an estimate for how much

people are willing to pay to reduce their risk of death, which has many applications in

the field of transport and environmental economics.

2.3 ALLOWING FOR OBSERVED HETEROGENEITY

In practice, and as discussed in Application 1, utility parameters may be heterogeneous.

For example, the Value of Time may be higher for high-income households, because the

marginal utility of income is lower (see Appendix A.1 for more information). It is pretty

straightforward to include this in the utility specification by using interactions between

attributes and household characteristics. Let zi be a household characteristic, e.g. income.

Then:

Ui j =α j +β0p j +β1p j · zi +κ0t j +κ1t j · zi +γzi +εi j , (2.11)

The probability to choose an alternative is now household-specific:

Pri (Y = j ) =
eα j+β0p j+β1p j ·zi+κ0t j+κ1t j ·zi+γzi

∑J
k=1

eαk+β0pk+β1pk ·zi+κ0tk+κ1tk ·zk+γzk

. (2.12)

Can we still derive the Value of Time in the above example? Yes, but this will be VOT given

the value zi . Please verify that:

VOT =
κ0 +κ1zi

β0 +β1zi
. (2.13)

2.4 MULTIPLE ALTERNATIVES

It is straightforward to extend the above framework to a setting with multiple alternatives,

which is convenient as many real-life choices have many alternatives. Let’s index the alter-

natives by j ,k = 1, ..., J . Let’s denote attributes of the alternatives by x. It then it is readily

verified that:

Pr(Y = j ) =
eβ

′xi j

∑J
k=1

eβ
′xi k

, (2.14)

where β is a vector of coefficients related to the attributes of the deterministic utility.
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The deterministic utility can be used to come up with an estimate for the consumer surplus

– or welfare. Small and Rosen (1981) shows that for agent i :

E[C S] =
1

υ
E
[

max
j=1,...,J

Ui j

]

=
1

υ

J
∑

j=1

Pr(Y = j )U j

=
1

υ
log

( J
∑

j=1

eβ
′xi k

)

+C ,

(2.15)

where υ is the marginal utility of income and C is an unknown constant, representing the

fact that the absolute value of utility cannot be measured. Note that the above consumer

surplus is the monetised expected direct utility. People often refer to log
(

∑J
j=1

eβ
′xi k

)

as

the log-sum – the expected utility from making a choice (De Jong et al., 2005). Note that

the log-sum increases when an alternative is added, even if the deterministic utility of that

alternative is low. This is what is known as a ‘love-for-variety’.

The Multinomial Logit formula also implies a somewhat peculiar property – the so-called

independence of irrelevant alternatives (IIA). Let’s consider three alternatives, j , k and `.

Using equation (2.14), the ratio of probabilities for j and k do not depend on whether ` is

included in the choice set:
Pr(Y = j )

Pr(Y = k)
=

eβ
′xi j

eβ
′xi k

. (2.16)

Let’s illustrate the IIA-property by introducing the so-called Red Bus-Blue Bus problem.

Imagine a transportation market with three travel modes: trains, red buses and blue buses.

Because red buses and blue buses are identical except for the colour, they have equal market

shares of 15%. Let’s further suppose that the normalised deterministic utility associated with

the train and buses is respectively 2.54 and 1.5 Now consider that the blue bus is painted

red. What are the predicted probabilities? Well, in principle there are now two alternatives

– the train and the red bus with deterministic utilities of respectively 2.54 and 1. Hence,

the predicted probabilities for the train and the red bus would then be 82.3% and 17.7% so

that the ratio of probabilities of choosing the train and red bus is unaffected. The bottom

line here is that the predicted probabilities are impacted by adding potentially irrelevant

alternatives to the choice set (i.e. the red bus ánd the blue bus), which is not particularly

convenient.

In other words, the IIA implies an unrealistically simple model in this example where an

improved product gains share from all other products in proportion to their original shares.

In the real world, products compete unequally with one another and when an existing

product is improved, it usually gains most from a subset of products with which it competes

most directly.6

5Note that e2.54/(e2.54 +e1 +e1) = 0.7), so you will arrive at a market share of 70% for the train.
6Whether the IIA property is an unrealistic depends on the context. In the context of location choice
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Figure 2.2 – NESTS: AN EXAMPLE

The Multinomial Logit cannot take this into account, but there is an alternative: the so-

called Nested Logit model. It allows alternatives to be similar to each other in an unobserved

manner. The researcher has to specify a structure that partitions the alternatives into groups

(or so-called ‘nests’) (Heiss, 2002). Figure 2.2 provides an example.

Let’s write the following utility function that allows for correlation within nests:

U j g =V j +Wg +ε j g (2.17)

where U j g is the utility obtained from choosing a certain alternative j in nest g , V j is the

deterministic utility that only differs within nests between alternatives j , and Wg only differs

between nests g .

Train (2003) then shows that:

Pr(d j = 1) = Pr( j |g )×Pr(g ),

=
eV j /λg

∑

k∈g eVk /λg
×

eWg+λg Ig

∑

g̃ eWg̃+λg̃
,

(2.18)

with Ig = log
(

∑

j∈g eV j /λg
)

. Ig is called the inclusive value, which is essentially the log-sum

of a given nest. λg plays a key role in the above equations and indicates the correlation

between nests. If λg = 1 there is no correlation between alternatives in the nest and one

is back at the Multinomial Logit model; if λ→ 0 there is perfect correlation between the

alternatives within the nest as in the Red bus-Blue bus example.

Equation (2.18) looks quite tedious but is essentially stating that the probability to choose

an alternative within the nest multiplied with the probability to choose that nest. Going

back to the Red bus-Blue bus: the probability to choose the blue bus is the probability to

choose the bus (the nest), which is 30%, multiplied by the probability to choose the blue

bus as opposed to the red bus, which is 50%. Hence, the probability to choose the blue bus

is 15%. When now the blue bus is removed, the probability to choose the bus will remain

unaffected, because λbus → 0.

models (see Application 2) it is for example hardly restrictive.
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Table 3.1 – SAMPLE DATASET

Respondent Alternative Price Time

identifier chosen (ine) (in min)

1 1 14 12

2 0 25 5

3 0 15 15

4 1 15 13

5 1 4 45

6 1 3 40

7 0 20 10

... ... ... ...

I d J p J t J

3 ESTIMATING BINARY DISCRETE CHOICE MODELS

Using the random utility framework and data on choices of people the next step is to estimate

the parameters β. Let’s first consider binary choices. Say that one’s data looks something

like the data shown in Table 3.1.

Hence, the dependent variable – indicating whether the alternative is chosen – is a dummy

variable that depends on two characteristics: price and time. Let’s consider three options to

estimate such a model: by a Linear Probability Model, a Logit Model or a Probit Model.7.

3.1 LPM

One may estimate this model by a so-called Linear Probability Model (LPM). The population

LPM is given by:

Pr(d j = 1|x j ) =β′x j , (3.1)

where d j equals one when an alternative is chosen. If β̂= 0.5, this indicates that the probabil-

ity to choose j increases by 50 percentage points when x increases by one. Hence, marginal

effects are straightforward to obtain and just a function of β.

Equation (3.1) is straightforward to estimate by Ordinary Least Squares by regressing a

dummy dependent variable on explanatory variable(s), which is an advantage. In many

situations one may want to control for unobserved characteristics of respondents, time

trends or location characteristics. This can be done by including fixed effects. Because LPM

is estimated by OLS including fixed effects (even multiple fixed effects) is straightforward.

Note that the R2-statistic is not very useful (Stock and Watson, 2011): imagine a situation

in which the R2 equals one, so that all the data lie on the predicted linear line. This is

impossible if the data is binary, except if the covariates x j are also binary. Note further

7One may also estimate Mixed Logit models, where the parameters β have some predefined distribution

(see Small et al., 2005). We leave estimation of such models for further study.
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that the errors are always heteroscedastic in a LPM.8 This is easy to accommodate by using

heteroscedasticity-robust standard errors (Angrist and Pischke, 2008).

There are essentially three disadvantages related to the Linear Probability Model (Pischke,

2012):

1. The LPM does not estimate the structural parameters of a non-linear model (see

Horrace and Oaxaca, 2006). This is particularly a problem when the predictions of d j

often lie outside the unit interval, which is impossible in practice;

2. The LPM does not give consistent estimates of the marginal effects;

3. The LPM does not lend itself towards dealing with measurement error in the depen-

dent variable.9

Logit and and Probit regression functions do account for the non-linearity and seem to

address the above issues. However, the exact non-linear function is unknown because one

has to make arbitrary assumptions on the distribution of the ε’s. According to Angrist and

Pischke (2008) and Pischke (2012) there is a lot to be said for sticking to a linear regression

function as compared to a fairly arbitrary choice of a non-linear model.

3.2 LOGIT

An alternative to estimating a Linear Probability Model is to estimate a Logit Model. This

will entail:

Pr(d j = 1|x j ) =
1

1+e−β′x j
. (3.2)

The above model is non-linear in its parameters, so it cannot be estimated by Ordinary Least

Squares. Instead, one has to rely on Maximum Likelihood (ML) to obtain the parameters.

The likelihood function is the joint probability distribution of the data as a function of the

coefficients to be estimated (Stock and Watson, 2011). The maximum likelihood estimator

chooses values of the parameters that maximise the probability of drawing the data that

are actually observed. In other words, the ML estimator finds the parameter values that are

‘most likely’ to have produced the data. The reader is referred to Stock and Watson (2011),

pp. 311-312, for more details.

But how to calculate marginal effects, i.e. what happens with the probability of choosing j

when x increases by one unit. Let’s rewrite (3.2) as Pr(d j = 1|x j ) = (1+e−β′x j )−1. Then, using

8The variance of d j is given by Pr(d j = 1)(1−Pr(d j = 1)) = β′x j (1−β′x j ), which is varying for different

levels of x j .
9A regression equation with measurement error in the dependent variable can be written as Y j = Y ∗

j
+ω j =

β′x j +ξ j . If ω j is uncorrelated to Y ∗
j

, the parameters to be estimated β are consistent. However in LPM the

dependent variable is binary, so we cannot write Y j = Y ∗
j
+ω j .
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the chain rule of differentiation:

∂Pr(d j = 1|x j )

∂x j
=−(1+e−β′x j )−2

×e−β′x j ×−β,

=β ·Pr(d j = 1) · (1−Pr(d j = 1))

=β
e−β′x j

(1+e−β′x j )2
.

(3.3)

The above formula suggests that there is a non-linear marginal effect that not only depends

on β (as in the LPM), but also on the specific values of x j . Hence, the marginal effect will

vary across the sample, dependent on the values of x j .

The β can be interpreted as an odds ratio – the ratio of the odds of j in the presence of k.

Because the estimated β is otherwise hard to interpret, people often report average marginal

effects. Standard statistical packages such as Stata and R can calculate those for you.

The main advantage of a Logit model as compared to the LPM is that the predicted probabil-

ity will always be within the unit interval. Furthermore, it is easier to include fixed effects in

Logit models than in Probit models, because the fixed effects can be conditioned out.10

The disadvantages are the following:

1. The assumption of an error term that is Extreme Value Type I distributed seems

particular and therefore arbitrary. On the other hand, this assumption is consistent

with the Random Utility framework from Section 2.

2. A Logit model is clearly a non-linear model, so it will be slower to estimate. For datasets

up to a million observations, this will usually not be a main issue, but beyond that, the

LPM may be preferred.

3.3 PROBIT

The final common option to estimate models with a binary dependent variable is to esti-

mate Probit Models, which implies that the unobserved idiosyncratic term ε is normally

distributed. The Probit model is given by:

Pr(d j = 1|x j ) =Φ(β′x j ), (3.4)

where Φ(·) is the cumulative standard normal distribution function. The predicted probabil-

ity that d j = 1 given values of x j is calculated by computing the z-score, which is the number

of standard deviations from the mean a data point is (see Table 1 in the Appendix of Stock

and Watson, 2011, for a table with z-scores).

10More specifically, the objective function of the fixed effects Logit estimator (confusingly also referred to

as the Conditional Logit estimator) is derived by conditioning the density of di j on
∑

i di j . Thereby, the fixed

effects are eliminated from the log-likelihood (Chamberlain, 1980; Stammann et al., 2016).

DISCRETE CHOICE 12

Stata
R


ESTIMATING BINARY DISCRETE CHOICE MODELS

The marginal effect is given by:

∂Pr(d j = 1|x j )

∂x j
=βφ(β′x j ). (3.5)

where φ(·) is the density of the normal distribution. Note that there is no closed-form

(i.e. an explicit formula) describing the marginal effect for the Probit model. Hence, the

marginal effect is simply obtained by (i) computing the predicted probability for one value

of the regressors, (ii) computing the predicted probability for a new value, and (iii) take the

difference. Again, statistical software can do this for you when you indicate to report average

marginal effects, or evaluate marginal effects at certain values of x j .

An advantage of the Probit is that, again, the predicted probabilities are always between

zero and one. Furthermore, the assumption of normally distributed ε’s may be a bit less

arbitrary.11

The disadvantages are similar to the Logit model, but in contrast to the Logit model, includ-

ing many fixed effects in Probit model is hard because they cannot be conditioned out and

parameters therefore need to estimated for each of the included dummy variables.

3.4 LPM, LOGIT OR PROBIT

What estimation method is then preferred when estimating a binary choice model? The

answer is ‘it depends on the situation’. But here are some suggestions:

• Look at the goodness of fit d j − d̄ j when testing for different models; investigate the

fraction correctly predicted (i.e. if the probability exceeds 50% and d j = 1, then it

is said to be correctly predicted); or use the Pseudo-R2, which uses the likelihood

function to investigate the model performance (Stock and Watson, 2011).

• Test for robustness by calculating marginal effects for all three models. Probit models

give usually almost the same results as Logit models (Stock and Watson, 2011).

• If you have a very large sample and mostly interested in marginal effects, then the

LPM is preferred. Also if you have multiple fixed effects (e.g. year and region fixed

effects) the LPM may be preferred because linear models with multiple fixed effects

can be readily estimated.

• For smaller samples Probit and Logit are usually more efficient (i.e. have smaller

standard errors) (say less than 1,000 observations), and usually give almost identical

results.

However, there is still an ongoing debate among economists with proponents and opponents

of the LPM. Hence, showing that your results are robust to the choice of estimation method

is the best you can do!

11For example, because of the Central Limit Theorem, which establishes that, in some situations, when

independent random terms are added, the distribution of the average are in the limit normally distributed.
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Application 1: Estimating the value of time and reliability. In Koster and Koster (2015)

we obtain data to estimate commuters’ value of travel time and value of arriving at the

preferred arrival time at work from a stated choice experiment held among participants

of a real-world rewarding experiment to combat congestion. We estimate the willingness

to pay values (WTP) for reductions in travel time and schedule delay early and late using

a linear specification of schedule delay (Vickrey, 1969).

In Figure 3.1 we show an example of choices an agent is confronted with. Each respon-

dent has to make 10 of these choices. From Figure 3.1 we observe that not only travel

time matters, but also how much too early or too late an agent will be at her work relative

to her preferred arrival time.

We assume that the deterministic part of the utility (Vnti ) of individual i facing choice c

and choosing alternative j from a set of J alternatives, is given by thee types of variables:

the expected reward E [Ri c j ], the expected travel time E [Ti c j ], expected schedule delay

early E [SDEi c j ] and expected schedule delay late E [SDLi c j ]. Schedule delay is defined as

the deviation of the preferred arrival time PATi of respondent i , where arrivals different

from PATi result in a dis-utility. Following Noland and Small (1995), we assume a linear-

additive specification of the systematic utility. The random utility of choosing alternative

j is then given by:

Ui c j =βER E [Ri c j ]+βET E [Ti c j ]+βESDE E [SDEi c j ]+βESDLE [SDLi c j ]+εi c j , (3.6)

The expected values of the variables are given by the probability weighted averages of

M masspoints, so E [Xi c j ] = 1
M

∑M
m=1 pi n j m Xi c j , for attribute X ⊂ {ER,ET,ESDE ,ESDL}.

As Figure 3.1 shows, the choice experiment has 2 possible travel times and therefore

M = 2. We are interested in willingness to pays. These are given by the following ratios:

V OT =−
βET

βER
, (3.7)

V SDE =−
βESDE

βER
, (3.8)

V SDL =−
βESDL

βER
, (3.9)

where V OT is the value of travel time, V SDE is the value of schedule delay early and

V SDL the value of schedule delay late.

The parameters in (3.6) are obtained by estimating a Binary Logit model. We report

the results in Table 3.2. We find a Value of Time of e35 per hour. This is higher than

found in the literature (see for example Brownstone and Small, 2005; Li et al., 2010).

There may be two reasons for this. First, on average this study has a high share of high-

income travellers in the sample and since these have a lower marginal utility of income
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Figure 3.1 – A CHOICE WITH TWO ALTEANTIVES

Table 3.2 – BASELINE RESULTS

(1)

Value of time e35.05

(e4.158)

Value of schedule delay early e23.22

(e2.211)

Value of schedule delay late e17.16

(e1.621)

Number of choices 4,870

Number of individuals 487

Log-likelihood 2,719

Note: The bootstrapped standard errors (500 replications)

are in parentheses.

they are less sensitive to rewards than average commuters. Second, it is very likely that

travellers are less sensitive to rewarding incentives than to the payment of a congestion

toll. This difference in valuation of gains and losses is a common finding in prospect

theory studies.

The value of schedule delay early and late aree23 ande17 for being an hour too early or

late, respectively. The finding that VSDE >VSDL is remarkable, since usually the opposite

is found (people prefer being too early over being too late) (see Lam and Small, 2001;

Brownstone and Small, 2005; Li et al., 2010). An explanation may be that this is due to

a selection effect of participants who have lower values of schedule delay late and are

employed in e.g. flexible highly-educated jobs.
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4 ESTIMATING MULTINOMIAL DISCRETE CHOICE MODELS

Many choices in real-life are not binary as respondents can choose between many alter-

natives. Examples are mode choice, route choice, location choice, etc. Let’s first consider

estimation of Multinomial Logit models, where the number of alternatives is not too large,

then Nested Logit, which relaxes the assumption of independence of irrelevant alternatives

as discussed in Section 2. This Section concludes by discussing estimation of Conditional

Logit models with many alternatives.12

4.1 MULTINOMIAL LOGIT WITH ALTERNATIVE-SPECIFIC PARAMETERS

Let’s first consider the Multinomial Logit model where parameters are alternative-specific.

From here, we just refer to this as the Multinomial Logit model. Hence:

Pr(d j = 1|x j ) =
e
β′

j
x j

∑J
k=1

eβ
′
k

xk
. (4.1)

Having alternative-specific β’s is convenient in certain circumstances. For example, in case

of mode choice the travel time parameter may be different in the train compared to the car,

because in the train people may spend time working or reading.

In the Multinomial Logit model all coefficients are compared to one base category, which is

omitted. Recall that also in the Binary Logit one compares the probability of alternative A,

as compared to B . Moreover, if one know the probability of J −1 alternatives, one knows

that the probability of choosing the last alternative J is simply 1−
∑J−1

j=1
Pr(d j = 1).

While having alternative-specific β’s in one case might be useful, it becomes less useful

when the number of alternatives grow large: the set of resulting coefficients will be too large

to be able to meaningfully interpret the coefficients. Then, the Nested Logit or Conditional

Logit models are probably more useful.

4.2 NESTED LOGIT

Nested Logit overcomes the particular Independence of Irrelevant Alternatives property of

Multinomial Logit models (see Section 2.4) – adding an alternative does not affect the relative

odds between two other options considered. Nested Logit models can be estimated in

standard packages such as Stata or more specialised ones such as Biogeme. The researcher

has to define the nests, but the software will calculate the correlation parameter λg for each

nest. If λg is close to one for all nests, one might as well estimate a standard Multinomial or

Conditional Logit model.

12It may also be that one’s dependent variable has an ordering (e.g. a likert-scale of satisfaction). In cases

where Ordinary Least Squares are inappropriate one may consider the estimation of Ordered Logit or Ordered

Probit models. The exact estimation of these models reaches beyond the scope of this syllabus.
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4.3 CONDITIONAL LOGIT

Many real-life choices are characterised by many alternatives. For example, when house-

holds choose where to reside, they have many alternatives. Also when choosing to buy a

certain car, an agent faces many alternatives. The Multinomial Logit with alternative-specific

parameters is not very suitable because the many coefficients would be hard to interpret.

Also the Nested Logit may not be useful, because it my be hard to define nests for many

alternatives (nevertheless, see for an example Head and Mayer, 2004). Moreover, there is no

reason why, say, a park or water body have a different impact when choosing location i or

location j . Let’s quickly recall the Conditional Logit specification:

Pr(d j = 1|x j ) =
eβ

′xi j

∑J
k=1

eβ
′xi k

, (4.2)

The issue is that with many alternatives and many agents, Logit models may be infeasible

to estimate. Consider, for example, the case where you would observe a thousand agents

that choose their location in The Netherlands. The Netherlands has about half a million

detailed zip-code locations. Hence, this would entail the inclusion of 1,000×500,000 = 0.5

billion observations. Few software packages can handle such large number of observations.

However, note that with the current surge in the availability of Big Data it is likely that the

number of agents and alternatives is even larger.

There are essentially three ways to overcome the problem of a too large number of observa-

tions:

1. The first way is to aggregate alternatives in a meaningful way. For example, instead

of modelling location choices of households at the zip-code level, one may model

this at the municipality level. Rather than having half a billion observations, one

now has 1,000×415 = 415,000 observations, which is perfectly possible to estimate.

Dependent on the application, this is a useful way to deal with the large number of

observations. For example, if one is interested in the effects of municipality-specific

taxes on location choices of people, this is a fine approach. On the other hand, if one

is interested in the effects of parks on location choices, this may not be appropriate

because the effects of parks tend to be very local.

2. It may therefore be preferred to consider an alternative way. McFadden (1978) pro-

poses to include the chosen alternative in the dataset, as well as a random subset of J

alternatives. For example, one includes the chosen car type and randomly selects 10

cars that are not chosen. McFadden (1978) shows that this does not affect the consis-

tency of the estimated properties. So with many agents and a not too small number

of alternatives (a large n × J), this approach should give the correct parameters. This

approach has been applied in many good papers (see e.g. Bayer et al., 2007). The

question is, however, how many alternatives to include; and what is the minimum

number of agents, to get approximately the right parameters? The answer to this

question is unknown, because the so-called small sample properties of this approach

are yet unclear.
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Figure 4.1 – THE POISSON DISTRIBUTION

3. A third promising alternative is to estimate the Conditional Logit model (4.2) by means

of a Poisson model. A Poisson model is a count data model, which has a dependent

variable that is a count variable (0, 1, 2, 3, and so on). Rather than including the chosen

alternative and the unchosen alternative for each agent, one now counts the times an

alternative is chosen. Let’s estimate the following regression:

C j = eβ
′x j , (4.3)

where C j is the number of times an alternative is chosen, which is assumed to be

Poisson distributed. Examples of Poisson distributions are given in Figure 4.1.13 In line

with Guimarães et al. (2003), Appendix A.2 shows that the Likelihood function of a

Conditional Logit model and a Poisson model are identical up to a constant, implying

that they deliver the same parameters β.

A big advantage is that the number of observations is now equal to the number of

alternatives, which almost always implies that the number of observations is not too

large. Another advantage is that the coefficients can be interpreted in a straightforward

manner, as they are equal to (semi-)elasticities.

A disadvantage of using Poisson models is that individual characteristics, such as

income, age or household composition, cannot be take into account, i.e. xi j cannot

be i -specific. The reason is that for the Conditional Logit model to be equivalent to a

Poisson model, one has to aggregate the choices of all agents.14 Hence, dependent on

the application, this is an issue.

13A Poisson model implies equidispersion, which means that the mean is equal to the variance of the

dependent variable. When this is (approximately) the case, or when the number of alternatives is very large,

this is fine. If this is not the case, one may consider to estimate Negative Binomial regressions or Zero-Inflated

Poisson regressions (see Guimarães et al., 2004). Those models reach beyond the scope of this syllabus.
14Guimarães et al. (2003) and Koster et al. (2014) derive some special cases in which agent’s characteristics

can be included.
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Application 2: The location choice of business services. Jacobs et al. (2013) studies

the location choice of start-ups of business services as a function of the presence of

multinational enterprises (MNEs) and other business services. This means that there is

a situation where there are many agents (start-ups) and many alternatives (locations).

The spatial behaviour of (knowledge-intensive) business services and their contribution

to regional growth and innovation systems has gained growing scholarly attention over

the last decade (Den Hertog and ., 2000; Muller and Zenker, 2001; Keeble and Nachum,

2002; Wood, 2002; Koch and Stahlecker, 2006). In empirical case studies, scholars

have suggested that business services cluster in large metropolitan areas due to the

agglomeration benefits they enjoy with their (global) clients (Keeble and Nachum, 2002;

Shearmur and Alvergne, 2002; Shearmur and Doloreux, 2008; Müller and Doloreux,

2009). This is related to agglomeration economies, which include, most notably, input

sharing, knowledge spillovers and a specialised labour force, which result in increasing

returns to scale.

The micro-data on the location of business services and other firms in each zip-code in

the Northwing of the Randstad are derived from LISA. See Van Oort (2004) for a detailed

description of these data and Figure 4.2 for an overview of the study area. The data on

MNEs are derived from the Achilles database for foreign-owned multi-nationals. The

Achilles database is compiled by the Dutch national agency for foreign direct investment

(NFIA) and consists of MNE establishments at locations in the Netherlands, including

their year of establishment in the Netherlands and their number of employees.

We then consider the location choice of business services start-ups as a function of

the density of multi-national employment, business services employment and other

employment. Hence, we assume the following profit function for a start-up:

πi j =α+βeM N E
j +γeBS

j +δeOF
j +ζX j +η j∈M +εi j , (4.4)

where πi j is the profit of firm i locating in j , eM N E
j

is the spatially weighted density of

employment in multi-national enterprises, eBS
j

the density in business services firms,

eOF
j

the density of employment in other firms, X j are control variables related to infras-

tructure and planning (e.g. the distance to the nearest highway and station), η j∈M are

municipality fixed effects and εi j is an idiosyncratic shock to profits that is assumed

to be Extreme Value Type I distributed. Hence, the probability that firm i will choose

location j is given by:

Pr(d j = 1) =
e
α+βeM N E

j
+γeBS

j
+δeOF

j
+ζX j+η j∈M

∑J
k=1

eα+βeM N E
k

+γeBS
k

+δeOF
k

+ζXk+ηk∈M

. (4.5)

Because there are no firm-specific characteristics included in the profit function, one

can estimate equation (4.5) by a Poisson model where the number of business services
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Table 4.1 – A POISSON MODEL

(Dependent variable: The number of business services start-ups per location)

(1) (2) (3)

Multi-national employment density (log) 0.0709*** 0.0422*** 0.0772***

(0.0151) (0.0092) (0.0121)

Business services employment density (log) 0.4304*** 0.4374*** 0.3821***

(0.0240) (0.0162) (0.0214)

Other employment density (log) -0.2242*** -0.2203*** -0.1352***

(0.0162) 0.0071 (0.0178)

Control variables (9) No Yes Yes

Municipality fixed effects (61) No No Yes

Number of locations 13,655 13,655 13,655

Log-likelihood -13,146.903 -13,051.163 -12,709.249

Notes: We include locations with at least 10 employees in 2000. The coefficients can be interpreted as elasticities and differ from

Jacobs et al. (2013) because of a slightly different set of controls and because we estimate Poisson models instead of Negative-

binomial regressions. Robust standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

start-ups in zip-code is the dependent variable.

We report results in Table 4.1. In the first column we only include the variables of interest.

As stressed earlier, the coefficients in a Poisson model can be readily interpreted as elas-

ticities. Hence, the coefficient indicates that a 1% increase in the density of employment

in multi-national firms is associated with a 0.071% increase in business services start-ups.

The impact of business services employment is much more important: a 1% increase in

density of business services employment is associated with a 0.43% increase in business

services start-ups. Hence, localisation – within-sector – agglomeration economies seem

to be a much more important determinant of location choices than the presence of

multi-national enterprises. Having said this, the impact of multi-national enterprises is

not negligible. The final coefficient relates to the effect of density of employment in other

firms, which we find to be negative. The reason may be that other employment does

not generate much agglomeration economies for business services, while at the same

time raising land rents, so that it is less attractive to locate in areas with just a higher

concentration of (unrelated) employment.

We investigate whether omitted variable bias is an issue by including a set of control

variables (i.e. distance to the highway, railway station, etc.) in column (2) and control

variables and municipality fixed effects in column (3). One may see that the coefficients

of interest do not change substantially, which suggests that omitted variable bias is not a

big issue.
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Figure 4.2 – THE STUDY AREA IN JACOBS ET AL. (2013)

5 STATED AND REVEALED PREFERENCE DATA

Quantitative empirical research relies on data. Data can either be obtained from existing

sources on observed or reported actual behaviour. Those data are referred to as Revealed

Preference (RP) data. Alternatively, one may undertake a so-called stated choice experiment,

where respondents are confronted with hypothetical choice sets. Those are so-called Stated

Preference (SP) data. Although research designs are imaginable where one combines RP and

SP data, usually one chooses between the use of RP and SP data.

5.1 REVEALED PREFERENCE DATA

Revealed preference data is often readily available. Given the rise of so-called Big Data

more and more individual-level data is becoming available. For example, large datasets

on housing transactions may be used to model residential location choices; or micro-data

from Statistics Netherlands on the workplace and residential location may be used to model

commuting decisions.

The advantages of RP data are the following:
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1. Probably the biggest advantage of RP data is that it is based on actual behaviour.

Hence, biases arising from the discrepancy between stated choices and actual choices

are irrelevant. Those biases are discussed in the next subsection.

2. Usually, RP data is relatively cheaper to obtain, as those have been collected for other

purposes. By using RP data one avoids the high costs associated with designing and

undertaking stated choice experiments.

3. RP data is often collected over a longer time, enabling the researcher to track individu-

als/agents over a (long) time. This provides the researcher with sufficient variation to

control for unobserved factors, e.g. by including fixed effects at the level of the agent.

However, there are also a couple of disadvantages associated with the use of RP:

1. In certain contexts, lack of variability may be an issue. For example, if one considers

the effects of gasoline taxes on car ownership decisions, one faces the issue that

gasoline taxes usually only vary at the country level.

2. There may be (multi-)collinearity between attributes of alternatives. For example, if

one considers the trade-off between travel costs and travel time (e.g. in order to be

able to calculate the value of time), one faces the issue that longer trips almost always

imply higher costs (e.g. because of higher gasoline costs). Hence, it may be hard to

distinguish between the two.15

3. RP data is of course hard to use when analysing new choice alternatives. The hydrogen-

powered car, for example, is yet hardly used. Using existing data it will be hard to

predict what will happen when this type of car becomes much more affordable.

4. Actual behaviour observed in RP data is not necessarily in accordance with utility or

profit maximisation. University students may for example end up in the study of their

second choice because of numerus fixus. To the extent these additional constraints

are unknown, this may imply biases in the estimated parameters if it is assumed that

decision makers freely choose.

5. Agents may also be subject to perception errors and imperfect information. For

example, prices of airline tickets depend on where and when the person buys his

ticket. Hence, because of imperfect information, the person may end up making a

suboptimal choice.

5.2 STATED PREFERENCE DATA

In stated choice experiments agents are confronted with alternatives based on usually two

alternatives. An example of such a choice is given in Figure 3.1.

The advantages of SP data are the following:

15Nevertheless, there are exceptions where there is enough variability in travel times and costs, see Peer

et al. (2015).
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1. In contrast to RP data, it is relatively easy to introduce new alternatives with new

attributes. This would help in predicting market shares of currently non-existing

products.

2. Large variability between the attributes is also easy to achieve, because the values

are to be determined by the researcher. Hence, large differences between, say, prices

and travel times can be included in the different attributes. To the extent collinearity

between attributes is an issue one may solve this by implementing an orthogonal

design, as to minimise the correlation between attributes (see Koster and Tseng, 2010,

for a discussion).

3. Because stated choice experiments occur in a ‘laboratory’ setting, the choice set is

clearly defined and it is clear what trade-off people make.

Using SP is not without its problems. The main disadvantages are summarised as follows:

1. There are several biases associated with the use of SP data (Brown, 2019).16

• There is information bias. This arises when the respondent has incorrect infor-

mation on the research context, which may lead to misunderstanding. To reduce

information bias, one should make the experiment as realistic as possible.

• There may be a starting point bias. There is a large literature on behavioural

economics showing that respondents are influenced by the set of available re-

sponses to the experiment. Hence, agents may make different trade-offs when

setting a relatively high or low price in the attributes. It is therefore important to

thoroughly test your design and choose attribute values that are in accordance

with reality.

• There could be a hypothetical bias. It appears that respondents tend to respond

differently to hypothetical scenarios than they do to the same scenarios in the

real world, i.e. there is cognitive incongruity with actual behaviour. To potentially

reduce hypothetical bias it is paramount to make the experiment as realistic as

possible. However, the hypothetical bias is otherwise hard to mitigate and is

probably the main disadvantage of stated choice experiments.

• The final bias is a strategic bias and may arise when respondents wants a specific

outcome. Strategic biases are only relevant in specific contexts in which respon-

dents have a direct or indirect interest in the outcome of the choice experiment.

Note that information bias, starting point bias and hypothetical bias are unintentional

biases (Brown, 2019), as the agent is not aware of the mistakes he or she makes.

Strategic bias, on the other hand, is an intentional bias, as the respondent is aware

of the fact that his stated behaviour may be fundamentally different from his actual

behaviour.

2. A second issue in SP data is the fact that choices may be subject to artificial errors.

16See for these and other psychological biases, Tversky and Kahneman (1981).
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These errors may arise due to boredom, due to the fact that respondents do not

carefully read instructions or due to respondents not understanding the questions

properly. It is important that stated choice experiments do not take too long and

are not too complicated so that all respondents can partake meaningfully in the

experiment.

The question remains whether to rely on RP or SP data. The outcome of this decision is

of course highly context-specific. As a general rule-of-thumb, economists prefer RP data

because they consider the biases associated with RP data less severe than the ones associated

with SP data.

Application 3. The value of a statistical life. The value of a statistical life (VSL) is an

economic value used to quantify the benefits of avoiding a fatality. VSL is more of an

estimate of willingness to pay for small reductions in mortality risks rather than how

much a human life is worth. In the evaluation of fatal accident costs the availability

of an estimate of the economic value of a statistical life is paramount, as in Europe,

for example, approximately 40,000 fatalities occur in traffic accidents every year. The

number of additional non-fatal accidents amounts to a multiple of this figure.

De Blaeij et al. (2003) undertake a meta-analysis based on 30 studies to study the different

values obtained in the literature regarding the value of a statistical life in road safety. The

estimates of the VSL in different studies is vastly different, and they range from less than

$ 200,000 to almost $ 30 million (in 1997 prices).

Using regression techniques De Blaeij et al. (2003) then aim to explain these huge differ-

ences. An interesting finding is that there are large differences between studies using SP

and RP data. More specifically, as expected, stated preference studies lead to about 132%

higher estimates than revealed preference studies, so the difference is non-negligible.

This may be explained by RP studies referring to policy measures that are actually

implemented, while policy measures in SP studies are often purely hypothetical – a

hypothetical bias. Furthermore, they also show that differences in survey design (par-

ticularly regarding payment vehicle and elicitation format) also have a strong impact

on the outcome. Hence, the study of De Blaeij et al. (2003) illustrates that the different

biases discussed earlier are very important and should not be ignored.

6 SUMMARY

This syllabus discussed discrete choice models. First, the basic theory underlying discrete

choice is introduced, which is the random utility framework. This framework can be readily

extended to multiple, or multinomial, choices. A particular property of the Multinomial

Logit setting is considered: the Independence of Irrelevant Alternatives. Defining nests within

the alternatives and estimating Nested Logit models may circumvent this issue.

Second, estimation of binary choice models is discussed – models where the dependent
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variable is dichotomous. One may estimate Linear Probability models, Logit models and

Probit models. Each estimation method has its advantages and disadvantages, but because

of its straightforward implementation, the Linear Probability model is probably preferred

when one has panel data and many fixed effects.

Finally, the estimation of multinomial choice models is considered – models where the

dependent variable has more than two possible discrete outcomes. Multinomial Logit

models with alternative-specific parameters are discussed first. This model relevant in the

context of mode choice. Then, estimation of Nested Logit and Conditional Logit models are

discussed. The latter are models where there are many alternatives. To deal with potentially

large choice sets, one may estimate Conditional Logit models by a Poisson model.

DISCRETE CHOICE 25



REFERENCES

REFERENCES

Abrantes, P. and M. Wardman (2011). “Meta-analysis of UK Values of Travel Time: An Update”.

In: Transportation Research Part A: Policy and Practice 45.1, pp. 1–17 (cit. on p. 7).

Angrist, J. and J. Pischke (2008). Mostly Harmless Econometrics: An Empiricist’s Companion.

Princeton: Princeton University Press (cit. on p. 11).

Bayer, P., F. Ferreira, and R. McMillan (2007). “A Unified Framework for Measuring Prefer-

ences for Schools and Neighborhoods”. In: Journal of Political Economy 115.4, pp. 588–

638 (cit. on p. 17).

Ben-Akiva, M. and S. Lerman (1985). Discrete Choice Analysis: Theory and Application to

Travel Demand. Cambridge, MA: MIT press (cit. on p. 2).

Brown, J. L. (2019). “Environmental Economics,” in: Encyclopaedia Britannica https://

www.britannica.com/topic/environmental-economics (cit. on p. 23).

Brownstone, D. and K. A. Small (2005). “Valuing Time and Reliability: Assessing the Evidence

from Road Pricing Demonstrations.” In: Transportation Research Part A: Policy and

Practice 39.4, pp. 279–293 (cit. on pp. 14, 15).

Chamberlain, G. (1980). “Analysis of Covariance with Qualitative Data”. In: Review of Eco-

nomic Studies 47, pp. 225–238 (cit. on p. 12).

De Blaeij, A. et al. (2003). “The Value of Statistical Life in Road Safety: A Meta-analysis.” In:

Accident Analysis and Prevention 35.6, pp. 973–986 (cit. on p. 24).

De Jong, G. et al. (2005). “Using the Logsum as an Evaluation Measure”. In: RAND working

paper WR-275-AVV (cit. on p. 8).

Den Hertog, P. D. and . (2000). “Knowledge-intensive Business Services as Co-producers of

Innovation”. In: International Journal of Innovation and Management 4, pp. 491–528

(cit. on p. 19).

Guimarães, P., O. Figueirdo, and D. Woodward (2003). “A Tractable Approach to the Firm

Location Decision Problem.” In: Review of Economics and Statistics 85.1, pp. 201–204

(cit. on pp. 18, A1).

Guimarães, P., O. Figueirdo, and W. Woodward (2004). “Industrial Location Modeling: Ex-

tending the Random Utility Framework”. In: Journal of Regional Science 44.1, pp. 1–20

(cit. on p. 18).

Head, K. and T. Mayer (2004). “Market Potential and the Location of Japanese Investment in

the European Union”. In: Review of Economics and Statistics 86.4, pp. 959–972 (cit. on

p. 17).

Heiss, F. (2002). “Specification(s) of Nested Logit Models”. In: University of Mannheim,

Working paper (cit. on p. 9).

Horrace, W. C. and R. L. Oaxaca (2006). “Results on the Bias and Inconsistency of Ordinary

Least Squares for the Linear Probability Model”. In: Economics Letters 90.3, pp. 321–327

(cit. on p. 11).

Jacobs, W. A. A., H. R. A. Koster, and F. G. Van Oort (2013). “Co-agglomeration of Knowledge-

intensive Business Services and Multinational Enterprises”. In: Journal of Economic

Geograp 14.2, pp. 443–475 (cit. on pp. 19–21).

DISCRETE CHOICE 26

https://www.britannica.com/topic/environmental-economics
https://www.britannica.com/topic/environmental-economics


REFERENCES

Keeble, D. and L. Nachum (2002). “Why do Business Service Firms Cluster? Small Consultan-

cies, Clustering and Decentralization in London and Southern England”. In: Transactions

of the Institute of British Geographers 27.1, pp. 67–90 (cit. on p. 19).

Koch, A. and T. Stahlecker (2006). “Regional Innovation Systems and the Foundation of

Knowledge Intensive Business Services. A Comparative Study in Bremen, Munich, and

Stuttgart, Germany.” In: European Planning Studies, 14.2, pp. 123–146 (cit. on p. 19).

Koster, H. R. A., J. N. van Ommeren, and P. Rietveld (2014). “Estimation of Semiparamet-

ric Sorting Models: Explaining Geographical Concentration of Business Services”. In:

Regional Science and Urban Economics 44, pp. 14–28 (cit. on p. 18).

Koster, P. R. and H. R. A. Koster (2015). “Commuters’ Preferences for Fast and Reliable Travel:

A Semi-Parametric Approach”. In: Transportation Research Part B: Methodological 81,

pp. 289–301 (cit. on pp. 7, 14).

Koster, P. R. and Y. Y. Tseng (2010). “Stated Choice Experimental Designs for Scheduling

Models”. In: Choice Modelling: The State-of-the-art and The State-of-practice. Ed. by

S. Hess and A. J. Daly, pp. 217–235 (cit. on p. 23).

Kouwenhoven, M. et al. (2014). “New Values of Time and Reliability in Passenger Transport

in The Netherlands”. In: Research in Transportation Economics 47.37-49 (cit. on p. 7).

Lam, T. C. and K. A. Small (2001). “The Value of Time and Reliability: Measurement from a

Value Pricing Experiment.” In: Transportation Research Part E: Logistics and Transporta-

tion Review 37.2-3, pp. 231–251 (cit. on p. 15).

Li, Z., D. A. Hensher, and J. M. Rose (2010). “Willingness to Pay for Travel Time Reliability in

Passenger Transport: A Review and Some New Empirical Evidence.” In: Transportation

research part E: logistics and transportation review, 46.3, pp. 384–403 (cit. on pp. 14, 15).

McFadden, D. (1973). “Conditional Logit Analysis of Qualitative Choice Behavior”. In: Fron-

tiers in Econometrics, pp. 105–142 (cit. on p. 4).

— (1978). “Modeling the Choice of Residential Location”. In: Transportation Research

Record 673, pp. 72–77 (cit. on p. 17).

Müller, E. and D. Doloreux (2009). “What We Should Know about Knowledge-Intensive

Business Services, .” In: Technology in Society 31, pp. 64–72 (cit. on p. 19).

Muller, E. and A. Zenker (2001). “Business Services as Actors of Knowledge Transformation:

The role of KIBS in Regional and National Innovation Systems.” In: Research policy, 30.9,

pp. 1501–1516 (cit. on p. 19).

Noland, R. and K. A. Small (1995). “Travel-time Uncertainty, Departure Time Choice, and

the Cost of Morning Commutes”. In: Transportation Research Record 1493, pp. 150–158

(cit. on p. 14).

Peer, S. et al. (2015). “Long-Run Versus Short-Run Perspectives On Consumer Scheduling:

Evidence From A Revealed-Preference Experiment Among Peak-Hour Road Commuters”.

In: International Economic Review 56.1, pp. 303–323 (cit. on p. 22).

Pischke, J. S. (2012). Probit better than LPM? (Cit. on p. 11).

Shearmur, R. and C. Alvergne (2002). “Intrametropolitan Patterns of High-order Business

Service Location: A Comparative Study of Seventeen Sectors in Ile-de-France,” in: Urban

Studies 39, pp. 1143–1163 (cit. on p. 19).

DISCRETE CHOICE 27



REFERENCES

Shearmur, R. and D. Doloreux (2008). “Urban Hierarchy or Local Buzz? High-Order Producer

Services and (or) Knowledge-Intensive Business Service Location in Canada, 1991-2001”.

In: The Professional Geographer 60, pp. 333–355 (cit. on p. 19).

Small, K. A. and H. S. Rosen (1981). “Applied Welfare Economics with Discrete Choice

Models”. In: Econometrica 49.1, pp. 105–131 (cit. on p. 8).

Small, K. A., C. Winston, and J. Yan (2005). “Uncovering the Distribution of Motorists’ Pref-

erences for Travel Time and Reliability”. In: Econometrica 73.4, pp. 1367–1382 (cit. on

p. 10).

Stammann, A., F. Heiß, and D. McFadden (2016). “Estimating Fixed Effects Logit Models with

Large Panel Data,” in: Beiträge zur Jahrestagung des Vereinsfür Socialpolitik 2016 (cit. on

p. 12).

Stock, J. and M. Watson (2011). Introduction to Econometrics. 3rd editio. Cambridge, MA:

Pearson (cit. on pp. 10–13).

Train, K. (2003). Discrete Choice Methods with Simulation. Cambridge, UK: Cambridge

University Press (cit. on pp. 4, 5, 9).

Tversky, A. and D. Kahneman (1981). “The Framing of Decisions and the Psychology of

Choice”. In: Science 211.4481, pp. 453–458 (cit. on p. 23).

Van Oort, F. G. (2004). Urban growth and Innovation. Spatially Bounded Externalities in the

Netherlands. Aldershot: Ashgate. (cit. on p. 19).

Vickrey, W. (1969). “Congestion Theory and Transport Investment”. In: American Economic

Review 59.2, pp. 251–260 (cit. on p. 14).

Wood, P. (2002). “Knowledge-intensive services and urban innovativeness.” In: Urban Studies

39.5-6, pp. 993–1002 (cit. on p. 19).

DISCRETE CHOICE 28



REFERENCES

APPENDIX

A.1 UTILITY MAXIMISATION AND THE VALUE OF TIME

Here the value of time from a standard utility framework where people maximise utility is

derived. Let’s assume the following utility function:

Ui =

J
∑

j=1

ψi j di j +βq0, (A.1)

where Ui is the utility of individual i and j = 1, ..., J are the number of alternatives. di j

equals one when the alternative is chosen by agent i and is zero otherwise. q0 denotes the

consumption of a composite good.

Consumers maximise the above utility function subject to a budget constraint:

ȳ =

J
∑

j=1

p j di j +q0, (A.2)

where ȳ is the income, which is spend either on the alternative chosen or on the composite

good. The consumption of the composite good can be written as q0 = ȳ −
∑J

j=1
p j di j and

plug this in (A.1):

Ui =

J
∑

j=1

ψi j di j +βȳ −β
J

∑

j=1

p j di j ,

=βȳ +

J
∑

j=1

(ψi j −βp j )di j ,

(A.3)

Let’s assume that βȳ is deterministic. Hence, a utility maximising individual will maximise

max j (ψi j −βp j ). Let’s now write ψi j =V j +εi j = κt j +εi j . Hence, the utility received from

an alternative is a function of an deterministic part, say the travel time, and a idiosyncratic

part. Hence, without loss of generality, one may write:

Ui =βp j +κt j +εi j , (A.4)

which is the familiar specification of utility used in Section 2.

The above is straightforward to derive with linear income. However, with non-linear income

effects, it becomes (much) harder, if possible, to derive the value of time directly from a

utility function.

A.2 FROM LOGIT TO POISSON

Here the proof Guimarães et al. (2003) is replicated showing why a Conditional Logit model

should deliver the same coefficients as a Poisson model. Let’s consider a Conditional Logit
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setting where agents have to choose between many locations (say location choice). Let

i = 1, ..., N be the number of agents and j , ..., J the number of alternatives. di j is a dummy

variable that equals one when the alternative is chosen by agent i and is zero otherwise. The

log-likelihood function of a Conditional Logit Model can then be written as:

logLC L =

N
∑

i=1

J
∑

j=1

di j log
eα+β

′xi j

∑J
k=1

eα+β
′xi k

. (A.5)

When characteristics of alternatives do not differ between agents (e.g. households and firms

have identical preferences up to the idiosyncratic term):

logLC L =

J
∑

j=1

n j log
eα+β

′x j

∑J
k=1

eα+β
′xk

, (A.6)

where n j is the number of agents that choose an alternative j .

Let’s now assume that n j is Poisson distributed with:

E[n j ] =λ j = eα+β
′x j , (A.7)

then one may write the log-likelihood of the Poisson model as follows:17

logLP =

J
∑

j=1

(

−λ j +n j logλ j − logn j !
)

,

=

(

−eα+β
′x j +n j (α+β′x j )− logn j !

)

.

(A.8)

Let’s consider the first-order condition with respect to α:

∂ logLP

∂α
=

J
∑

j=1

(

n j −eα+β
′x j

)

= 0, (A.9)

from which we can derive:

eα =
N

∑J
j=1

eα+β
′x j

. (A.10)

Let’s substitute α back into the log-likelihood function (A.8) to obtain:

logLP =−N +N −

J
∑

j=1

n j log
(

eα+β
′x j

)

+

J
∑

j=1

n jβ
′x j −

J
∑

j=1

logn j !,

=

J
∑

j=1

n j log
eα+β

′x j

∑J
k=1

eα+β
′xk

−N +N log N −

J
∑

j=1

logn j !.

(A.11)

It can be seen that the first part on the second line of the above log-likelihood function is

17Note that n! = n × (n −1)× (n −2)× (n −3)× ...×3×2×1.
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identical to the log-likelihood function of the Conditional Logit model, while the remaining

terms are constants. Hence, the resulting estimates β should also be the same.
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