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1 INTRODUCTION

Most of you will undertake empirical research, for example when writing your MSc Thesis

or, later, when working. This syllabus is concerned with setting up a research project and

measuring (causal) effects of interest.

In Section 2 we introduce a step-by-step guide to design and execute a research project.

You first formulate your hypotheses – which are your expectations on how reality should

be understood, based on e.g. economic theory. Then you bring the hypotheses to the

data by determining what variables cause each other. The effect of a treatment variable on

outcome variable is then referred to as the treatment effect. Measuring this effect is often not

straightforward for several reasons. It might be that the treatment variable is correlated with
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INTRODUCTION

(a) CHICKEN AND CRUDE OIL (b) SPACE LAUNCHES AND SOCIOLOGY

Figure 1.1 – EXAMPLES OF SPURIOUS CORRELATIONS
Notes: Correlations are obtained from spuriouscorrelations.com. Data on total U.S. crude oil imports are from the U.S. Depart-

ment of Energy, while data on per capita consumption of chicken are from the U.S. Department of Agriculture. Data on worldwide

space launches are from the Federal Aviation Administration and awarded sociology doctorates in the U.S. are from the National Science

Foundation.

other (unobserved) variables, or that individuals may self-select into treatment. Another

possibility is that there is reverse causation. This is why you have to think of a strategy to

isolate the treatment effect.

Because most of empirical economic research is concerned with identification of causal

effects, we focus attention on a central feature of most applied research projects, which is

the identification strategy. A causal effect implies that a certain treatment or explanatory

variable causes a change in an outcome variable. This is different from a correlation, where

there is a statistical association between two variables. However, even although correlations

may be high, they may be entirely spurious, which implies that a statistical relationship is

explained by another factor or factors, so-called confounders.

Why is then economics so much obsessed with causal effects? First of all, when looking

at real-life data one may observe many statistical correlations. Let’s give two examples.

Using data between 2000 and 2009, there is a correlation of 0.90 between the per capita

consumption of chicken and U.S. crude oil imports (see Figure 1.1a). While the correlation

is very high, it seems hard to argue for a causal effect of eating more chicken on crude

oil imports (or vice versa). Similarly, in Figure 1.1b we find a correlation of 0.79 between

worldwide non-commercial space launches and awarded sociology doctorates in the U.S.

Here again, it is very hard to argue that there is a causal effect of space launches on doctorate

awards in sociology. So, although plain correlations are sometimes good starting points

for your research, they are of limited interest when understanding how the world really

works. Second, research questions in (spatial) economics are often specifically targeted at

evaluating policies. A correlation between a certain policy variable and an outcome variable

is then of limited interest; however a causal effect may inform us on the effectiveness of the

policy.

The focus on identification of causal effects is not specific to the field of (spatial) economics.

In many fields where statistical data is used to test hypotheses, one is predominantly inter-
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ested in causal effects. For example, in medicine research it is very common to randomly

assign participants to a treatment group and a control group, where the former receives

the actual treatment and the latter a placebo. By comparing the average measure of health

between the two groups afterwards, we identify a average causal effect of the medicine. But

why is this the case? In Section 3 we will explain why randomized experiments do identify a

causal effect of a treatment.

In spatial economics, we often cannot set up randomised experiments. For example, let’s

say you are interested in the effect of local air pollution on life expectancy. It would be hard

to think of a way to randomly select people into a treatment group and/or control group.

We therefore have to come up with imperfect alternatives using statistical/econometric

methods. In Section 4 we consider various alternative strategies. The usefulness of these

strategies depend on the specific context of the research question at hand.

When using econometric methods and data, which is almost always a sample of the full

population, there is uncertainty in the estimated effect. The standard error of an estimate

indicates how precise an estimate is. If the standard error is small relative to the effect,

we say that the effect is statistically significant. It is therefore important to also correctly

estimate standard errors. In Section 5 we discuss a couple of issues to bear in mind when

calculating your standard errors.

In Section 6 we summarise what we think are the most important insights from this syllabus.

2 RESEARCH DESIGN: A STEP-BY-STEP GUIDE

When aiming to undertake empirical research, we consider eight (main) steps:

1. Formulate your hypotheses;

2. Determine the ‘treatment’ variable(s) and the ‘outcome’ variable(s);

3. Think of an identification strategy to identify causal effects;

4. Select samples, discuss measurement error and provide descriptives;

5. Determine functional form of variables of interest;

6. Think of different issues in estimating standard errors;

7. Estimate the model and interpret the results;

8. Provide robustness checks of the results.

These steps may seem to describe a linear process; however, when undertaking research it

may be that there is feedback between different steps in the process. For example, when

you obtain results in Step (7), it appears that the results are imprecise, which may imply that

you need more data or need to make other selections in Step (4). Or: when undertaking a
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robustness analysis in Step (8) and your results appear not to be very robust, you may have

to go back and improve on the identification strategy (Step (3)).

Below we will briefly discuss each step, but this syllabus will put particular emphasis on

Steps (3) and (6) – defining your identification strategy and obtaining the standard errors.

STEP 1: FORMULATE YOUR HYPOTHESES

Formulating your hypotheses may seem trivial but is probably the most important step of

your research. These hypotheses are not necessarily strict statistical hypothesis (i.e. a null

hypothesis that a coefficient does not have an effect and the alternative hypothesis that a

coefficient has an effect), but instead are more general descriptions of reality on what your

expectations are and how reality should be understood. You should clearly state the problem

that you are trying to solve or research question that you are trying to answer. Make sure

that the hypotheses clearly define the topic and are not too broad.

How to form reasonable expectations on how reality may be understood? At least one useful

source of information is economic theory. Many papers first develop a theory that leads

to testable empirical implications. Or even more interesting, it is usually the case that

economic theory indicates that a certain hypothetical policy is welfare improving (e.g. a tax

on pollution), but is silent on the extent of the welfare gain. In such cases, one may estimate

demand and supply functions, in order to determine the magnitude of welfare effects of such

a policy. Another important piece of information comes from existing policies. For example,

in many countries one has to pay a transaction tax when buying a new house. According to

theory, residential mobility will fall because of the transaction tax. By examining the effect of

current transaction taxes on residential mobility, you do not only test the hypothesis which

is interesting according to economic theory, you also estimate the effect of the policy (i.e.

the level of the transaction tax on mobility).

Another way to form expectations, although slightly more risky, is to apply so-called reverse

causal inference. This implies that you look at some interesting outcome variable and you

ask yourself what may explain this outcome. For example, you may observe a tremendous

house price increase between 2013 and 2020 and you ask the question what could be

determinants of this house price growth. Alternatively, you might observe a strong increase

in telecommuting since March 2020 and you wonder what possibly could be a factor that

explains this increase.1 Why is reverse causal inference somewhat risky? Reverse causal

inference is not necessarily firmly grounded in economic theory and related to existing

policy. Hence, potential findings may be of limited interest to academics or policy makers.

1Reverse causal inference is to be contrasted to so-called forward causal inference, which supplies answers

to research questions. For example, forward causal inference will inform you on how large an effect is of certain

variable x on an outcome variable y .
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STEP 2: DETERMINE TREATMENT AND CONTROL VARIABLES

Please look around for data and define what variables are available. Think about what your

explanatory variables (i.e. your x variables) and your outcome or dependent variables (i.e.

your y variable(s)) are. Make sure that y and x are actually good proxies for the things you

want to measure, so that measurement error is low (we will talk more about measurement

error later. Finally, please check whether y and x are continuous or discrete variables.

Usually, it also makes sense to think about the order of magnitude of the effect you want

to examine (maybe based on previous research) also in relation to the size of your dataset.

For example, if you wish to know the effect of a new tax on fuel on car ownership, it makes

sense to check how much car owners spent annually on fuel. Let’s suppose this is 10% of

the annual car ownership costs. Let’s suppose the new tax doubles the fuel price faced by

consumers. In this case, even with relatively few observations, you may be able to detect the

price of the tax. But if, alternatively, the tax increases the price only marginally, you may be

able to detect the effect of the price only given millions of observations.

We emphasise that although we will talk a lot about different type of (regression) models,

in applied econometrics one is often interested in a specific effect of a certain variable.

Regression models frequently contain many variables. Nevertheless, one is strongly advised

to focus the attention on a single (or a few) x variables (while possible controlling for a

host of other variable) and a single (or a few) y variables. It is much simpler to properly

measure the impact of one x variable, rather than a large set. Moreover, as we will see later,

an identification strategy is often valid in the context of only one or maybe a few variables.

In what follows we therefore assume that there is one outcome variable yi that is affected by

one treatment variable xi (and possibly a bunch of control variables, ci ).

STEP 3: DEVELOP AN IDENTIFICATION STRATEGY TO IDENTIFY CAUSAL EFFECTS

Once having defined your x and y , you have to think on how to measure a causal effect

of x on y , rather than just a correlation. This essentially means that you have to define

the ‘treatment’ group and a ‘control’ group. The latter should be otherwise identical to the

people that receive treatment, except that the people in the control group do not receive

treatment.

Hence, you have to carefully discuss whether there might be endogeneity issues that thwart

a causal interpretation of xi on yi . We consider four main endogeneity issues:

1. There could be a selection bias. For example, let’s assume you are interested in the

effects of providing social housing on the well-being of inhabitants. Entry into social

housing is, however, not exactly random (as there often exists a maximum income to

be eligible for social housing and there are waiting-list.) Hence, comparing well-being

of people in social housing to other people will not lead to a meaningful causal effect

of providing social housing on well-being. The selection bias implies that you are

comparing apples with oranges, rather than apples with apples.

2. One could worry about an omitted variable bias. Omitted variable bias arises when
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a potential independent variable – which is related to both the dependent variable

and an included independent variable – is omitted from the model. The result is

a biased estimate of the coefficient of the included variable. An omitted variable

bias is essentially the same as a selection bias (Angrist and Pischke, 2008) as omitted

variables also imply that one compares apples to oranges. We will show in Section 3.2

that addressing omitted variable bias is the same as addressing selection bias.

3. Reverse causality is an issue once y affects x, rather than x influencing y .2

4. Fourth, once x is measured with error, the estimated effect will be incorrect. We

discuss this in the next step in more detail.

In Sections 3 and 4 we will provide different strategies on what valid identification strategies

could be to address endogeneity concerns. Here we want to emphasise that it is important

to discuss endogeneity issues in length. More specifically:

• Wonder whether there could be a selection effect;

• Carefully think about what could be potential unobserved factors that are correlated

to the treatment variable and give examples;

• Make sure that reverse causality is not an issue in your context.

STEP 4: SELECT SAMPLES, DISCUSS MEASUREMENT ERROR AND DESCRIPTIVES

Much of applied economic research relies on readily available datasets. It is important

to think carefully whether it is appropriate to use the full dataset. Say you are interested

in the effects of school meals on health outcomes and you have information on the full

population. It is then not so wise to focus on health outcomes of the whole population.

Instead, it makes more sense to only include children at primary schools. However, when

making selections you have to think carefully. Say you are interested in the effectiveness of a

policy combating traffic congestion on highways, then it makes sense to include other roads

(because motorists frequently have the option to choose between highways or other roads).

To make proper selections is important as to mitigate the selection bias, which arises when

treatment and control groups are not the same.

Data cleaning is the process of detecting and correcting/removing inaccurate observations

from a dataset. It is then key to properly identify incomplete or incorrect observations in the

data. To get a first insight into your data, please make histograms and scatterplots for the

variables of interest. Let’s consider the histograms of the log of income in Figure 2.1. In the

left panel, you observe a weird spike at a log income of 18.42. If you take the exponent of this

number you arrive at an income ofe99,999,999. This seems unlikely and probably refers

to missing values that are coded this way. Removing these observations from the data then

2Sometimes, there is a distinction made between reverse causality and simultaneity. In the former x is

only influenced by y , while with simultaneity x influences y , but y also influences x. In this syllabus we will

just refer to reverse causality as the phenomenon where x may be influenced by y , irrespective of whether x

influences y .
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(a) INCOME, RAW DATA (b) INCOME, CLEANED

Figure 2.1 – EXAMPLES OF INCOME HISTOGRAMS

Notes: The figures are based on adapted data from Statistics Netherlands.

seems the right way to do in order to obtain Figure 2.1b.3 Also check for other unrealistic

values, such as house prices or incomes being negative, variables expressed in percentage

terms that are negative or exceed 100, etc.

More generally, when you are worried about measurement error in your dataset, it may be

relevant to know more about the consequence of measurement error for your identification.

As a general rule, random measurement error in a dependent continuous variable will not

affect the causal effect of interest (although it will lead to higher standard errors). We show

this in Figure 2.2a where random measurement error (between the open dots) lead to exactly

the same relationship.4 However, random measurement error in the explanatory variable of

interest causes your estimates to be biased towards zero.5 We illustrate this in Figure 2.2b,

where the fitted regression line is flatter once there is measurement error in xi . We provide a

formal explanation in Appendix A.1.

How to deal with errors in your data is a bit subjective, but here are some important rules to

keep in mind:

1. Always describe the exact way you have cleaned the data. Good science implies that

you, or anyone else, can replicate your work;

2. Discuss and possibly remove unrealistic values. Frequently it is subjective which

values are unrealistic, but you have to make a decision anyway. With a sensitivity

analysis, you can also always check whether these decisions impact your results.

3Removing outliers is tricky. Whether this is correct depends on the context because outliers may be based

on some underlying process. Therefore, carefully think whether observations are really incorrect.
4For example, you wish to estimate the effect of air pollution on house prices – which is an important

method to estimate the household marginal willingness of households to avoid pollution. In this case, you do

not mind so much to receive the dataset with provides information about the asking house price (although

you would have preferred the transaction price), at least, given the reasonable assumption that the difference

between the asking and the transaction price is random (or more appropriately, is not related to air pollution).
5Hence, for the example given, if you would have substantial measurement error in the observations of

pollution, you have to worry about downward estimates.
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(a) MEASUREMENT ERROR IN yi (b) MEASUREMENT ERROR IN xi

Figure 2.2 – MEASUREMENT ERROR IN yi AND xi

Figure 2.3 – VARIANCE IN xi IS NECESSARY

3. Distinguish between dependent and independent variables. Sometimes it makes

sense to constrain the independent variable x to a certain range.6 However, note that

variation in xi is necessary to identify any effect. We illustrate this in Figure 2.3. If

we would only focus on x ∈ {1.3,1.7} it will be hard to detect any effect of xi on yi ,

while the positive relationship between xi and yi is apparent when considering the

full range of xi . As a general rule of thumb, it is better not to constrain the range of the

dependent variable, yi .

4. Measurement error is context specific and therefore should be discussed in detail.7

6For example, you wish to know the effect of number of children on commuting behaviour. Now suppose

there is one person in your dataset with 16 children, whereas almost all your observations have less than 4

children. It is then perfectly fine, to examine the effect of children, for a subsample of households with less

than 4 children, as long as you understand that the estimated effect only holds for the selected subsample.
7For example, in datasets on commuting behaviour, there are always a few people with commuting

distances of 200km. It is extremely unlikely that workers commute more than 150km per day, at least, if they go

regularly to their work. If you have a dataset of workers who state that they go 5 times a week, to their work,

200 km must be unrealistic; but if they go only once a week, it is very realistic.
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When you have made the appropriate selections, cleaned the data and discussed any re-

maining measurement error, please provide univariate descriptive statistics. At least provide

a table with the mean, standard deviation, minimum and maximum values for all relevant

variables. Think carefully about the unit of measurement of your variables, and whether or

not it makes sense. Sometimes this is easy, sometimes it is not. For example, if you have

received a dataset, with the age of the person, it is clear that if you are average in the dataset

is 400, it is likely that age is measured in months, and not in the usual years. But for most

people, if they have received a measurement of PM2.5 pollution, they have not an immediate

idea of whether an average of 30 makes sense or not.

In addition, please make histograms of continuous variables. You may also compare the

means between the treatment and control groups. It is also useful to think about bivariate

statistics, such as scatterplots. What is important is that you and the reader of your report

receive a clear understanding on the data that are used.

STEP 5: DETERMINE FUNCTIONAL FORM OF REGRESSION EQUATION

The regressing equation to be estimated looks something like this:

yi = f (xi ,ci ,εi ), (2.1)

where yi is the dependent variable measure for an individual i ; f (·) is some unspecified func-

tion of xi , control variables ci , and the unobserved error term εi . The specific relationship

between the outcome variable and the explanatory variables is referred to as the functional

form.

It is very complicated to estimate (2.1), so we often assume a specific relationship rela-

tionship between ci , xi and yi . Often, it makes sense to start with a linear-in-parameters

relationship :

yi =βxi +γci +εi , (2.2)

where β and γ are parameters to be estimated by a regression, usually referred to as Ordinary

Least Squares (OLS). The estimates our obtained by minimising the sum of squared residuals.

In case that the explanatory variables xi and ci are not correlated to the unobserved error

term, then the estimated values of β and γ, denoted β̂ and γ̂ respectively, can be interpreted

as causal effects and are equal to the β and γ.8

Many students assume (wrongly!) that the residual must be normally distributed for proper

estimation of causal effects – that is, an unbiased estimator of the parameter of interest. This

is generally not the case. When the number of observations is large (as is mostly the case in

spatial economics), OLS works fine also when the residuals are not normally distributed. The

main assumption here is that the residual εi is not correlated to the independent variables

in the model.

8The residual is the difference between the observed yi and the predicted value of yi . In contrast to the

error term, the residual is observed. By construction, the residual is not correlated to the explanatory variables.
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Furthermore, the assumption of a linear-in-variables relationship is usually the best starting

point, but may not always be appropriate.9 Hence, in your research you should discuss why

linearising the regression equation is not much of a problem. Note that you may include

non-linear effects of variables and still use OLS with a linear-in-parameter specification for

example by including quadratic terms of x:

yi =β1xi +β2x2
i +γci +εi , (2.3)

If {β1,β2} > 0. This would imply that the effect of xi gets stronger for higher values of xi .

However, if β1 > 0,β2 < 0, the effect may be positive for low values, but at a decreasing rate

for higher values of xi . Adding higher-order terms (x2
i

– quadratic, x3
i

– cubic, x4
i

– quartic)

may be feasible if you allow for non-linearity in one variable, but you can imagine that the

number of variables to include in the regression becomes infeasibly large once you allow for

flexible interactions between xi and the control variables ci . Moreover, higher-order terms

are highly correlated with each other. The effects may therefore be hard to estimate and

predictions may be very imprecise outside of the domain of xi .10

We therefore also may estimate semi- or non-parametric regressions that allow for very

flexible functional forms. We refer to Yatchew (2003) for a proper introduction into semi-

and non-parametric regression techniques.11

Economists are often interested in elasticities, which indicates the percentage change of x

on y . More formally, it holds that:

∂yi

∂xi

xi

yi
=

∂ log yi

∂ log xi
(2.4)

We show in Appendix A.2 that the above holds. Let’s consider the following log-linear

regression equation:

log yi =β log xi +γci +εi , (2.5)

where log refers to the natural log. If we take the derivative of log yi with respect to log xi (so
∂ log yi

∂ log xi
) we obtain, β. Hence, the regression coefficient in a log-linear equation captures an

elasticity.

Apart from regression coefficients having a very convenient interpretation, there are also

other reasons to use logs. Here are a couple of cases when the use of logs is preferred over a

9The main reason is that the linear-in-variables specification give the best linear approximation even if the

correct specification is non-linear (see for example Angrist and Pischke, 2014, p. 85).
10It is useful to note that the relationship between the dependent and independent variable may not only

be non-linear, but may also be non-monotonic. Non-monotonicity implies means that the sign of the effect is

not the same for the range of the independent variable examined. In this situation, it is important to include

higher order terms that allow for non-monotonicity. For example, the effect of age on commuting distance is

usually found to be increasing up to 30 years, and decreasing afterwards.
11We also will briefly discuss semi-parametric regressions in the course Urban Economic Challenges and

Policies. Functional form issues will explicitly come back in assignments in the course Empirical Transport

Economics.
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standard linear regression:

• Taking logs may be useful to linearise a non-linear relationship, which would be

otherwise more difficult to estimate.

• When economic theory indicates that a log-linear relationship is preferable. Economists

often work with Cobb-Douglas utility/production functions, which naturally lead to

log-linear equations.

• The residuals have a skewed distribution. A log-transformation may then be useful

to obtain residuals that are approximately symmetrically distributed. The starting

point is that you examine the shape of the dependent variable yi , because the residual

usually has the shame shape as the dependent variable, particularly one explanation

power of the model is low (please note that the residual is equal to the dependent

variable when you do not include any independent variable).

• The spread of the residuals may vary systematically with the values of the dependent

variable (which we refer to as heteroscedasticity). The purpose of the transformation

is to remove that systematic change in spread, implying homoscedasticity. We come

back to this issue in Section 5.1.

• One frequently estimates models using data on regions (areas). These regions differ in

size (e.g. Amsterdam is larger than Utrecht) (Briant et al., 2010). When you estimate

the effect of a variable on the change in an aggregate variable measured for this region

(e.g. the effect of a new tax policy on the change in the number of firms in a region), it is

almost always good practice to focus on the (change in the) logarithm of the aggregate

variable.

STEP 6: THINK OF DIFFERENT ISSUES IN ESTIMATING STANDARD ERRORS

Applied researchers are often interested in whether the estimated coefficient, β̂, is statis-

tically significant. Statistical significance is the likelihood that your estimated effect is not

caused by chance. Your estimate is statistically significant, given the significance level, which

reflects your risk tolerance and confidence level. One often use confidence levels of 10%, 5%

and 1%. If your estimate is significant at the 5% level, there is a 5% chance that there may be

actually no effect.

Whether or not an estimate is statistically significant not only depends on the size of β, but

also on its standard error. If the standard error is large relative to the coefficient the estimate

will be less statistically significant.12

It is therefore important to obtain the correct standard errors; otherwise, one may be

wrongfully conclude that there is an effect of the treatment variable on the outcome variable.

12When you have estimated β̂ and the standard error σ̂β, you can calculate the corresponding T -statistic as

Tβ = β̂/σ̂β. Given a large dataset, when T > 2.576, the estimate is said to be statistically significant at the 1%

level. Similarly, when T > 1.960 (T > 1.640), the estimate is statistically significant at the 5% (10%) level. Hence,

the higher the T the more likely to reject the null-hypothesis.
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In Section 5 we therefore discuss a few issues that you should keep in mind when estimating

standard errors:

• Heteroscedasticity;

• Clustering; and

• Serial correlation.

STEP 7: ESTIMATE THE MODEL AND INTERPRET THE RESULTS

Now you are ready to estimate the model you specified in Step (5). Of course, you can

use standard statistical packages such as Stata, R, MatLab or, when you want to estimate

discrete choice models, you may use Biogeme.

This will mean that you will obtain an estimate of β and a corresponding standard error. It

is then very important to properly interpret the estimated effect. For that it is important to

exactly know in what units yi and xi are measured. For example, say that yi is the current

yearly income in euro and xi are the years of schooling. When β̂= 1000 with a standard error

of 200, this implies that one year of additional schooling leads to ae1000 increase in yearly

income. This effect is statistically significant at the 1% level (T = 1000/200 = 5 À 2.576).

However, when years of schooling would be measured in months, the estimated effect

(β= 1000) would economically be much larger.

Related to this, we should distinguish between economic significance and statistical signifi-

cance (see McCloskey and Ziliak, 1996; Ziliak and McCloskey, 2008). A coefficient could be

statistically significant, but of limited economic impact. For example, say that in the example

of the effect of schooling in income, β̂= 10 with a standard error of 5. We would conclude

that the estimate is statistically significant at the 5% level, but we would agree that a e10

increase income for one year of schooling would not be an awfully large effect. By contrast,

if β̂ = 10,000 with a standard error of 7,500 we would conclude that the estimate is not

statistically significant at a conventional significance level; however, ae10,000 increase in

yearly income seems to be a large and economically meaningful. Hence, when interpreting

your results, do not only pay attention to statistical significance but also clearly indicate

whether your result is economically meaningful and significant.

Given the prominence of log-linear regressions, we would like to say something on how to

interpret coefficients in log-linear regressions. In Table 2.1 we display several options when

either the outcome or treatment variables are log-transformed.

We should make one remark regarding the lower-left quadrant. While the logarithmic scale

approximates percent changes, it is not entirely correct for large changes in either xi or β.

This particularly holds when xi is a dummy variable. Halvorsen and Palmquist (1980) and

Angrist and Pischke (2014, p. 94), show that the percent change in yi is given by:

(eβ̂−1)×100%. (2.6)

IDENTIFICATION AND ESTIMATION 12

Stata
R
MatLab
Biogeme


RESEARCH DESIGN: A STEP-BY-STEP GUIDE

Table 2.1 – INTERPRETATION IN LOG-LINEAR REGRESSIONS

xi log xi

yi =βxi +εi yi =β log xi +εi

yi β̂= ∂yi

∂xi
β̂= ∂yi

∂ log xi

xi ↑ 1 → yi ↑ β̂ xi ↑ 1% → yi ↑ β̂/100

log yi =βxi +εi log yi =β log xi +εi

log yi β̂= ∂ log yi

∂xi
β̂= ∂ log yi

∂ log xi

xi ↑ 1 yi ↑ (β̂×100)% xi ↑ 1% → yi ↑ β̂%

(for marginal changes in x)

Let’s say that you are interested to know the log house price difference between houses

with a garden and without a garden and you find β̂ = 0.012. Halvorsen and Palmquist’s

formula shows that the house price increase would be 1.207%, which is essentially identical

to the coefficient. However, if β̂= 0.28, the percent increase in house prices would be 32.3%.

Hence, for large changes in xi or when β̂ is large, please use Halvorsen and Palmquist’s

formula to calculate the percent change in the dependent variable.

STEP 8: PROVIDE ROBUSTNESS CHECKS OF THE RESULTS

The final, but an important, step is to show that your results are robust, because in the

research process you frequently have to make choices of which some are somewhat arbitrary.

For example, when cleaning the data, you have to make a decision whether or not an

observation is valid or not. The robustness analysis consists of a set of alternative regressions

where you test the sensitivity of β with respect to many decisions including definitions of

variables, functional form, alternative identifying assumptions, sample selections and data

corrections. What relevant robustness checks are highly depends on the context.

For example, you wish to estimate the effect of the presence of a nearby coffee-shop on the

logarithm of house prices. But what is nearby? Let us suppose you define nearby as within

50m, and you find that prices decrease by 2%. As a minimum, you have to check then that if

you would have chosen another definition, e.g. 40m, or 60m, you would get similar estimates

(or that the estimates based on 40m are slightly stronger, because then the coffee-shop is

more nearby, whereas with 60m the effect might be slightly weaker).
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3 RANDOMISED EXPERIMENTS

3.1 THE SELECTION BIAS AND RANDOMISATION

According to Angrist and Pischke (2008, 2014) the most credible and influential research

designs use random assignment to treatment and control groups. We will explain here

why randomised experiments are considered to be the ideal. It will also be clear why you

see them seldom in spatial economics. It is however key to understand the advantages of

random assignment to treatment and control groups, because this helps you to understand

how close other approaches that are common in spatial economics come close to this ideal.

Let’s consider a research project evaluating the effects of a place-based policy, such as a

housing subsidy, on well-being of beneficiaries of the policy.13

We define yi to be the outcome variable measuring self-reported well-being of inhabitant i

and xi is a dummy treatment variable indicating whether the individual received treatment,

i.e. whether the individual received a subsidy to upgrade her/his property. Then:

yi =
{

y1i , if xi = 1;

y0i , if xi = 0,
(3.1)

so y1i is the outcome if individual i received treatment and y0i if this individual did not

receive treatment. Then:

yi = y0i + (y1i − y0i )×xi , (3.2)

where (y1i − y0i ) denotes the causal effect of the treatment. Note that the causal effect may

be different for different individuals. For example, inhabitants differ in terms of age, income

and education, and it is therefore unlikely that the effect is identical for each individual.

Note that we do not observe the same individual at the same moment with and without

treatment – we only observe outcomes of individuals that are treated or not treated. If we

naively compare the expected well-being of the individuals which received a place-based

policy to the control group of individuals that did not, we have:

E[yi |xi = 1]−E[yi |xi = 0]
︸ ︷︷ ︸

Observed difference in well-being

= E[y1i |xi = 1]−E[y0i |xi = 1]
︸ ︷︷ ︸

Average treatment effect on the treated

+E[y0i |xi = 1]−E[y0i |xi = 0]
︸ ︷︷ ︸

Selection bias

,
(3.3)

where E[·] denote expectations, and where the last step follows because we added and

subtracted the term E[y0i |xi = 1]. The average treatment effect is the difference between

the well-being of those who received treatment (E[y1i |xi = 1]) and the well-being of the

13Place-based policies refer to policies, as the name suggests, which differentiate between locations, and

are very common. For example, in the Netherlands, the 83 poorest neighbourhoods of the entire country, have

received substantial subsidies to upgrade the stock of public housing.Another example of a place-based policy

is to build highways in poor regions within the EU.
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individuals who received treatment if they would not have received treatment (E[y0i |xi = 1]).

However the observed difference in well-being consists of an additional term, which is the

difference between the base well-being (y0i ) between those who received the place-based

policy subsidy and those who are not. This is referred to as the selection bias, because the

individuals which are treated differ from those which are not treated with respect to certain

(unobserved and observed) variables.

In the example where you want to measure the difference in well-being between individuals

who received a housing subsidy and those who did not receive the subsidy, this selection

bias is likely huge because individuals with higher incomes generally report higher levels of

well-being but at the same time are unlikely to receive a housing subsidy (E[y0i |xi = 1] ¿
E[y0i |xi = 0]). Hence, if you do not take into account the selection bias you would wrongfully

conclude that a housing subsidy decreases well-being of beneficiaries. Also in other contexts,

the selection bias may be considerable and so large that it masks the average treatment

effect on the treated (Angrist and Pischke, 2008).

How then to overcome the selection bias? Let’s consider randomisation of the treatment.

Hence, in this example this would mean that you randomly select that receive treatment,

while another randomly selected group other individuals do not. This would imply that:

E[y0i |xi = 1] = E[y0i |xi = 0]). (3.4)

Hence, by randomising treatment assignment, the expected base well-being is the same.

Using (3.4), equation (3.3) simplifies to:

E[yi |xi = 1]−E[yi |xi = 0]
︸ ︷︷ ︸

Observed difference in well-being

= E[y1i |xi = 1]−E[y0i |xi = 0]
︸ ︷︷ ︸

Average treatment effect

. (3.5)

The latter implies that if we have a randomised experiments, by comparing means between

individuals in treated and control groups, we identify the average treatment effect.14

One should notice that in some settings the average treatment effect may not be of particular

interest. For the place-based policy example, we are not interested per se in the overall

increase in well-being of arbitrary chosen individuals; we are particularly interested in the

increase in well-being of people that are poor. But by including rich individuals (with higher

initial levels of well-being and who are less likely to see an increase in well-being because

of the place-based policy), the average treatment effect is likely an underestimate of the

treatment effect of poor individuals in which we are interested. This implies a paradox:

the average treatment effect may apply to no one. Hence, in cases where heterogeneity in

treatment is large, the average treatment effect may be of limited interest. One may then

look at e.g. the median treatment effect, or the share of individuals that respond positively to

a treatment (although calculating these heterogeneous effects may not be straightforward,

see e.g. Lee, 2000).

14In Appendix A.3 we explain why randomisation also implies that we identify the overall average treatment

effect, rather than just the average treatment effect on the treated.
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3.2 ANALOGY TO REGRESSIONS

Regression is useful to analyse causal questions. Can we than incorporate the above discus-

sion into a regression framework? Let’s first assume that the treatment effect β= y1i − y0i is

a constant (so it does not vary with i ). We then can rewrite (3.2) to:

yi = α
︸︷︷︸

E[y0i ]

+ β
︸︷︷︸

y1i−y0i

xi + εi
︸︷︷︸

y0i−E[y0i ]

, (3.6)

where εi is the random part of y0i . If we evaluate the above equation with and without

treatment, we have:

E[yi |xi = 1]−E[yi |xi = 0]
︸ ︷︷ ︸

Observed difference in well-being

= β
︸︷︷︸

Treatment effect

+E[εi |xi = 1]−E[εi |xi = 0]
︸ ︷︷ ︸

Selection bias

.
(3.7)

Hence, if there is a selection bias, this implies the expected value of the error term differs for

the group which is treated from the group which is not treated, hence there is a correlation

between the error term εi and the treatment variable xi .

To explore this point further, let’s now consider to include additional control variables ci to

(3.6). Note that if group assignment is really random, then control variables are uncorrelated

to xi and adding them should not change the estimated β. However, adding these controls

may lead to more precise results (so smaller standard errors) if these controls explain varia-

tion in the outcome variable and therefore reduce residual variance (Angrist and Pischke,

2008). Because the standard error of β is a function of the residual variance, this leads to a

lower standard error.15

The above assumption that the treatment effect is a constant is very restrictive. In general,

the treatment effect βi = y1i − y0i is not constant, but varies with i . In this case, one aims

to estimate the average value of E[β] = E[y1i − y0i ] = E[y1i ]−E[y0i ]. Given a regression, the

estimate of β, so β̂, can still be interpreted as the average treatment effect in the population

(ATE).

For example, assume that β takes two values which depend on an unobserved random

dummy variable S, which is not correlated to any of the independent variables. Hence,

β1 = y1i − y0i for Si = 1 and β2 = y1i − y0i for Si = 0. Consequently, the average treatment

effect is equal to β1ESi +β2(1−E[Si ]), where E[Si ] is equal to the share of observations for

15More specifically, the formula for the standard error of β is (Angrist et al., 2017, p. 95): SE(β̂) = σεp
N

1
σx

=
√

(
∑N

i=1 ε
2
i

)

/
(

N ×
∑N

i=1(xi − x̄)2
)

, where N is the number of observations, σε refers to the standard deviation

of the regression residuals and where σx refers to the standard deviation of x. If more controls are added

that are not correlated to x, you may observe SE(β̂) becomes smaller because εi becomes smaller. Instead, if

the controls are (positively or negatively) correlated to x, then the standard deviation of x, when controlling

for other variables, becomes smaller, so the denominator falls and the SE(β̂) may become larger when more

controls are added.
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Table 3.1 – HEMOGLOBIN AND ANEMIA RESULTS

Hemoglobin Anemia

(1) (2)

Sales village 0.033 -0.006

(0.029) (0.009)

Number of observations 11,503 11,503

Notes: We report the coefficients on the sales treatment variable from

a regression with either hemoglobin concentration or has anemia as

the outcome variable. Standard errors in parentheses; *** p < 0.01, **

p < 0.5, * p < 0.10.

which holds that the causal effect is equal to β1 and where 1−E[Si ] is equal to the share of

observations for which holds that the causal effect is equal to β2. When you estimate this

model with OLS, β̂=β1ESi +β2E[1−Si ].

Application 1 — the impact of double fortified salt on anaemia. Banerjee et al. (2018)

study the effects of a randomised experiment reducing ‘iron deficiency anaemia’, which is

a frequent health issue among the poor worldwide. They focus on a particular treatment,

which is salt fortified with iron and iodine. They distribute Double Fortified Salt (DFS)

very cheaply (|9, ore0.012, per kg) in 200 randomly selected villages, while having 200

control villages that are not aware of the existence of DFS. They then run the following

regression:

yi g =α+βxi g +γci g +µg∈b +εi g , (3.8)

where i denotes the individual, g is the village, and µg∈b are so-called Block b fixed

effects, where Blocks refer to an administrative unit smaller than the District. In in each

of eight Blocks they randomly select 29 villages and in each of six Blocks randomly select

28 villages.

Table 3.1 reports the results. They find essentially no effects of the treatment on the

intensity. For haemoglobin, given a control mean of 12.056, the effect is economically

small and statistically insignificant. The same holds for anaemia. Banerjee et al. (2018)

show that the absence of both economically and statistically significant effects holds

across a wide array of different demographic sub-groups.

This finding is in contrast to previous experiments showing positive effects of DFS.

Banerjee et al. (2018) argue that these somewhat disappointing results are explained

by (i) relatively modest purchases and (ii) a low impact of DFS for the majority of the

population, even when consumed somewhat regularly.

3.3 ADVANTAGES AND DISADVANTAGES OF RANDOMISED EXPERIMENTS

Randomised experiments have several advantages, of which the most important are (see

Nickson, 2015):

IDENTIFICATION AND ESTIMATION 17



RANDOMISED EXPERIMENTS

• It is the only type of study that establish causation. Although other identification

strategies may come close to a randomised setting, they will not rely on exact randomi-

sation.

• An experiment forces the researcher to think clearly on what the treatment is and how

this is administered to respondents.

• Randomised experiments, when large enough, allow for sub-group analysis and there-

fore provide evidence in heterogeneity in the treatment; beyond just identifying the

average treatment effect.

There are also several disadvantages of randomised experiments. We list a few here (Nickson,

2015):

• For many economic questions (such as related to economic history) random experi-

ments are simply not possible (Pearl, 2009).16

• Randomisation of treatment may be unethical in the sense that withholding treatment

(e.g. going to the hospital, education) is ethically unacceptable.

• Randomised experiments are very expensive to organise, especially when you aim to

have large group sizes.

• Experiments can be logistically challenging to organise if treatment occurs at multiple

sites and locations.

• Long-term effects (such as the effects of years of schooling on wages) are hard to

identify.

• The setting of a randomised experiments may not always mimic real life situations,

which lead to limited external validity and biases.17

• One may question whether full randomisation really occurs. In many settings, al-

though the treatment is random, the selection of applicants into the experiment is not

random.18 Hence, the estimated treatment effect only applies to the group of people

that choose to participate in the experiment.

A more philosophical critique on randomised experiments is that, although we may measure

a causal effect, this does not mean that we know why there is an effect of xi on yi ; and hence

the estimate may yield little information. Deaton (2010) is very critical towards randomised

experiments and argues that:

“without guidance from an understanding of underlying mechanisms, [randomised

experiments are] unlikely to lead to scientific progress in the understanding of economic

16This does not only applies to economics, but also to evolutionary biology, history, computer science, etc.
17These are biases that also are discussed when discussing Stated Preference data. See the syllabus on

discrete choice.
18Think of many psychological experiments where applicants receive a small amount of money to partic-

ipate. Only potential participants with a high marginal utility of money and a lower value of time will then

participate (e.g. students).
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development.”

Deaton emphasises the role of economic theory in producing insights in viable mechanisms.

Econometric methods, including randomised experiments, then should be used to explicitly

evaluate these theoretical mechanisms.

4 ALTERNATIVE IDENTIFICATION STRATEGIES

4.1 EXHAUSTIVE SET OF CONTROLS

Because randomised experiments often cannot be applied to economic settings we have to

think of alternative ways to measure a causal effect of xi on yi . The strategy to deal with any

bias including the selection bias (see Section 3.2) is called an identification strategy.

The most obvious first step to deal with selection bias is to include a host of control variables,

ci . Let’s write:

yi =α+βxi +γci +εi . (4.1)

By controlling for additional variables, the omitted variable bias might be reduced, because

now the omitted variable bias is equal to E[εi |xi = 1,ci ]−E[εi |xi = 0,ci ]. Hence, if the control

variables are correlated with the main variable of interest, xi and with the error term, εi ,

then the omitted variable bias is smaller.19 Although it may be theoretically possible that we

observe all relevant controls in a certain application, in most applications one cannot be

certain to observe all relevant control variables. This holds particularly for many research

projects in spatial economics, as it close to impossible to have data on all relevant determi-

nants of, say, house prices, air pollution or travel destination choices, and it is frequently

likely that the variable you are interested in is correlated to one of those determinants.

Please note that this gives rise to an omitted variable bias of which the size xi depends on

the strength of the correlation with the omitted variables.

A standard way is then to either use first-differenced data or include fixed effects. Let’s now

consider that you have temporal data, so you observe individuals in different periods t (e.g.

data for several years) where you observe some individuals at least twice. We further make a

difference between controls that vary over time, ci t and controls that do not, denoted by di .

Hence, we generalise (4.1), and we write:

yi t =αt +βxi t +γci t +δdi +εi t . (4.2)

Please notice that we have allowed here for time fixed effects: αt . In other words, we have

19One can reduce this bias not only by estimating regressions with controls, but also by estimating so-called

matching estimators, which, in practice, give almost the same result as OLS. In case of matching estimators,

one matches each observation with another observation (or a combination of observations) that is similar

in terms of control variables, but differs in terms of xi . The average difference in the dependent variable, yi ,

between the two samples (one sample for which xi = 1, another sample for which xi = 0), gives the average

effect of xi on yi .
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added a dummy variable for each t (e.g. a dummy for each year of observation). Why

would you do that? One reason is that there are often trends in the variables. For example,

housing prices usually increase over time because of inflation. Similarly, in most countries,

air pollution usually has a strong trend (because of technological developments).

Let us now denote differences over time by ∆. So, for example, ∆yi t = yi t − yi t−1. We can

write:

yi t − yi t−1 = (αt −αt−1)+β(xi t −xi t−1)+γ(ci t − ci t−1)+δ(di t −di t−1)+εt −εt−1.

∆yi t =∆αt +β∆xi t +γ∆ci t +∆εi t .
(4.3)

Because di t = di t−1, the term cancels from the regression. Hence, first-differencing the

data controls for all time-invariant characteristics of an individual i . Many factors are

actually (almost) time-invariant (think of: birthplace, gender, cultural factors, mother tongue,

geographical features of the landscape, etc.), so using first-differencing is a powerful step to

mitigate omitted variable bias problems, although it will not completely address it when

many factors (ci t ) may change over time.

Note that an important prerequisite for first-differencing the data is that there is variation

in the treatment over time; otherwise the effect cannot be identified will also be cancelled.

Hence what do we learn from this? In general, focusing on treatments that change over

time are more convincing. For example, if we have data for several years, and at a certain

moment, some individuals receive an improvement of housing, we are more likely to get

a causal effect. If you’re interested in the effect of coffeeshops on house prices, it is more

convincing to analyse data when coffeeshops are forced to close because of a certain policy,

then to analyse the effect of coffee shops on house prices when there is no variation in coffee

shops within your dataset.

A similar approach to mitigate omitted variable bias is to include group fixed effects. Let’s say

you can attribute each individual i to groups g . These groups can be regions, municipalities,

neighbourhoods, or even individuals themselves if you observe individuals over time. Hence,

we write:

yi g =α+βxi g +γci g +µg +εi g , (4.4)

where µg denotes the group fixed effect. Including many fixed effects is computationally

difficult (for example, if you have data for the full population, you may have to include

millions of fixed effects). Fortunately, for linear models, one can get rid of the fixed effects,

with a trick using the averages. This trick is not only extremely useful, it is also very insightful.

The fixed effects estimator implies that you subtract the group average, denoted by ȳg , from

(4.4):

yi g − ȳg =β(xi g − x̄g )+γ(ci g − c̄g )+µg − µ̄g +εi g − ε̄g .

∆yi g =β∆xi g +γ∆ci g +∆εi g .
(4.5)

where we now redefine ∆ as the difference of i with the average of the group g to which i
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belongs to. So, for example, ∆yi g = yi g − ȳg . Note that when estimating (4.4), one does not

explicitly estimate the group fixed effect.

Here we assume that we can make a distinction between control variables that vary within

the group ci g and only between groups dg . By including fixed effects at the group level,

the latter controls cancel from the regression equations (as dg = d̄g ) in the same way as

the µg cancel out. Hence, by including fixed effects we control for all factors that vary only

between groups. These can be e.g. municipal or national taxes, demographic compositions

of neighbourhoods, country-wide environmental policies.

Generally speaking, the more refined the definition of the groups the more convincing the

fixed effects estimator is.20 For example, let us suppose you have cross-sectional data, and

you wish to know the effect of an attractive energy label on house prices (in some countries,

energy labels are required by law to inform buyers of the energy efficiency of the house), as

an attractive energy labels may provide an incentive to homeowners to improve insulation

of their house as they know they can get a higher price if they sell the house. The difficulty

here is that the presence of an attractive energy label is likely correlated with unobserved

characteristics that are related to the spatial environment. Hence, it is a good idea to include

neighbourhood fixed effects, but it would even be better to include street fixed effects, or

even postcode fixed effects, if streets contain several postcodes.

However, the downside is that the treatment variable always needs to vary within the group;

otherwise we cannot identify the effect of interest. For example, if all houses within the

same postcode have the same energy label, then including postcode fixed effects does not

work. Moreover, even if there is variation within the groups, the fixed effects may absorb

part of the effect where one is interested in (Abbott and Klaiber, 2011). For example, say you

are interested in the effects of pollution on health outcomes, while you include local fixed

effects (say neighbourhood fixed effects). Although strictly speaking pollution varies within

the neighbourhood, it will be hard to detect differences.

When you have a panel data of individuals, you have to decide whether or not to use fixed

effects estimators or first-differences. Note that if you have (maximally) 2 observations per

individual, both estimators generate identical results, but the results may differ if you have

more observations per individual. It is frequently the case that the fixed effect estimator

is (much) more efficient than by taking first-differences, so you obtain smaller standard

errors.21 However, the fixed effects estimator have the drawback that it imposes slightly

stronger exogeneity conditions, as the first difference estimator combines information about

individuals that are one period apart, whereas the fixed effects estimator uses information

from individuals over longer periods.

20You may also include multiple fixed effects (say year fixed effects and region fixed effects). Recent packages

in Stata allow for the inclusion of many types of fixed effects. Please consider the command reghdfe.
21The intuition is that with fixed effects you subtract the group-averaged variables which, generally, has less

random variation than the variables one time period lagged, which you use when calculating first differences;

however, given strong serial correlation in the residuals, even this result is not general.
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Application 2 — Footfall and retail vacancies. For retail firms, the number of potential

shoppers in a certain location is likely one of the most important determinants of location

choice. This is investigated in Koster et al. (2019) where, among other things, the impact

of number of pedestrians passing by a shop, referred to as footfall, on the vacancy

probability is investigated. They use data on footfall counts from Locatus in 1,253

shopping streets and data on locations of shops in those streets between 2003 and 2015.

Ideally, we would like to compare retail firms in identical streets with randomly assigned

levels of footfall. They aim to estimate the following regression:

yi t =α+β log xi t +µt +εi t , (4.6)

where yi t denotes a dummy variable that equals one when the property i is vacant in a

given year t . xi t is the number of pedestrians per hour on a regular Saturday in year t

and µt are year fixed effects.

One may be concerned that endogeneity thwarts a causal interpretation of β as locations

with more pedestrians may be more attractive for retailers for other reasons. Koster et al.

(2019) therefore only include observations close to shopping street intersections and

include intersection fixed effects. The design is illustrated for the city centre of Rotterdam

in Figure 4.1. The idea is to compare shops are around the corner with each other that

have very different levels of footfall. However, by including intersection fixed effects we

control for all differences between shopping streets.

Table 4.1 reports the results based on Linear Probability Models. The coefficient in

column (1) implies that doubling of footfall leads to an decrease in the vacancy rate of

(log2− log1) ·−0.0304 = 2.1 percentage point. Given an average vacancy rate of about

6%, this effect is substantial.

One may concerned that the results are inconsistent because of reverse causality; a

vacant shop may also imply that fewer pedestrians are attracted; in other words, vi t may

influence xi t . To address this concern two instruments are considered: the number of

cinemas in 1930 within 200m and the number of shops in 1832 within 200m. Because

of historic reasons, past concentrations of shops/cinemas affect the footfall positively

today. However, these are not impacted by contemporary vacancy rates. In column (2)

and (3) it is shown that these instruments are reasonably strong (especially for cinemas

in 1930) and the results are somewhat stronger. However, given the larger standard errors

they are not statistically significantly different from the baseline OLS estimates.

4.2 INSTRUMENTAL VARIABLES

The strategy to include fixed effects or first-difference the data is often combined with

the use of instrumental variables (IV). IV is first described in Wright (1928) and applied

in Reiersol (1941). It is now a very important tool within the realm of applied economics
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Figure 4.1 – FOOTFALL AND SHOPS IN ROTTERDAM

Table 4.1 – FOOTFALL AND RETAIL VACANCIES

(Dependent variable: shop is vacant)

OLS 2SLS 2SLS

Instrument: Cinemas in 1930 Instrument: Shops in 1832

(1) (2) (3)

Footfall (log) -0.0304*** -0.06161*** -0.0500*

(0.0016) (0.0176) (0.0258)

Shop and location characteristics Yes Yes Yes

Intersection fixed effects Yes Yes Yes

Year fixed effects Yes Yes Yes

Number of observations 394,389 394,389 207,242

R2 0.0448

Kleibergen-Paap F-statistic 37.37 9.777

Notes: We only keep observations within 250m of an intersection. In column (2) we instrument for footfall with the

number of cinemas in 1930 within 200m and in column (3) the number of shops in 1832 within 200m. Standard errors

in parentheses; *** p < 0.01, ** p < 0.5, * p < 0.10.

(Stock and Trebbi, 2003). The first Nobel prize winner in Economics, Ragnar Frisch, received

his prize for his contribution to IV. Arguably, its most important use is to address omitted

variable bias (as well as reverse causation and measurement error bias), and it is considered

to be the main contribution of economists to statistical theory.

To keep the exposition as simple as possible, suppose you are interested to estimate the

following regression (without control variables) and you have one instrument:

yi =α+βxi +εi , (4.7)

IDENTIFICATION AND ESTIMATION 23



ALTERNATIVE IDENTIFICATION STRATEGIES

where xi is (strongly) correlated to εi . For example, if you are interested in estimating a

demand function, then yi would be the quantity of the good and xi would be the price of

the good, which is correlated to εi .

We can use two-stage least squares (2SLS) to estimate the causal effect of xi on yi :

xi = ζ+ηzi +ξi , (1st stage)

yi =α+βx̂i +εi , (2nd stage)
(4.8)

where zi is called an instrument, and x̂i is the predicted value from the first stage using the

estimated coefficient η̂. We emphasise the two conditions for valid instruments:

• The instrument should be relevant, implying that cov[zi , xi ] 6= 0. In other words, η̂

should be a strong instrument. As a rule of thumb, most researchers interpret this that

the instrument should be statistically significant with an F-statistic exceeding at least

10.22 When having multiple endogenous variables, please look at the Kleibergen-Paap

F-statistic to investigate whether the instrument is strong.

• The instrument should be exogenous, implying that cov[zi ,εi ] = 0. This assumption

is not testable, because, by definition, we do not observe unobservable variables

implying that we cannot assess cov[zi ,εi ]. Hence, the exogeneity of an instrument

should be based on sound economic reasoning.23 Note that this assumption also

implies that the instrument zi only influences yi via xi .24

Now suppose again as above thatβi = y1i−y0i is not constant, but varies with i . We have seen

above that OLS then provides the average treatment effect for the population. Unfortunately,

this is not the case when you use instrumental variables. For example, suppose that the

instrument zi is only observed when Si = 1, but there is no information about this variable

otherwise. For example, if the instrument is the gender of couples with (at least) two children

(Angrist and Evans, 1998), then this instrument is not observed for individuals with less

than two children.25 Consequently, the instrumental variable approach provide the average

22The F-statistic is the square of the t-statistic in case of one variable, so the t-statistic should exceed 3.16

when you have one instrument.
23An attentive reader may remark that if one has multiple instruments one may use overidentification tests

to assess the validity of the instruments. However, with overidentification tests, one can only investigate the

validity of one instrument, conditional on the validity of the other instrument(s). Furthermore, even if both

instruments are valid, this does not imply that they give the same results, because each instrument provides a

local average treatment effect. Hence, while overidentification tests are informative on the robustness of your

results, they provide limited information on the overall exogeneity of the instruments.
24Let’s say you are interested in the effect of development aid on economic growth. A problem is that

economic growth may also impact development aid, because if countries get richer they will receive less aid.

Deaton (2010) discusses that many studies have used country dummies as instruments for aid. While these are

likely strong instruments, they are unlikely to meet the exogeneity condition, as country dummies may impact

economic growth in a myriad of ways other than via aid (e.g. via geography, cultural factors, FDI, etc.).
25This instrument is useful in a number of contexts. In most countries, the gender of children can be

interpreted as random, but still has influence on households’ decisions. For example, households with children

of different gender are more likely to occupy larger houses further from the city centre, because in most

cultures, parents prefer children not to share rooms with children of another gender. It is also the case that
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treatment effect, where the average is estimated for a subsample of individuals with Si = 1.

This average is known as the ‘local average treatment effect’ (LATE) (see Imbens and Angrist,

1994). Hence, in case treatment heterogeneity is important (so different individuals having

different β’s), different instruments may lead to different β’s, because different individuals

are used in the estimation procedure to identify the effect.

The use of IV is closely related to the estimation of (inverse)demand and supply functions,

and therefore closely related to economic theory. Instruments then can be used to shift the

supply function to identify the demand function or vice versa. We explain this in more detail

in Appendix A.4 and provide an application to estimating supply and demand for parking.

In economics, there is an ongoing discussion on whether the local average treatment effect

is of interest. Proponents of the (quasi-)experimental approach (see Angrist and Krueger,

2001; Angrist and Pischke, 2008; Imbens, 2010; Gibbons and Overman, 2012) have argued

that a causal estimate is almost always better than not addressing selection bias. Others (like

Deaton, 2010; Heckman, 2010) are more critical and advocate the use of ‘structural’ models

to properly learn about the exact mechanisms of how xi impacts yi .

While the conditions for valid instruments are straightforward, in practice it is not so easy to

find instruments that are both strong and uncorrelated to the error term εi . For example,

the effect of gender of children on decision-making by households is presumably very small,

so you will need a very large dataset in order to estimate such an effect. Consequently,

this instrument might work if you have the data of the full population for several years

of a specific country, but is less likely to work if you have ‘only’ a few hundred thousand

observations.

Whether an instrument is valid depends highly on the context and specific research ques-

tions. Below we will give some examples of likely valid instruments. Frequently, economic

theory can be helpful to determine whether or not an instrument is potentially valid.

Application 3 — Air pollution and road safety. Sager (2019) aim to answer the question

whether air pollution affects road safety. Recent evidence indicates that short-term

fluctuations in air pollution may impair productivity and human behaviour in ways that

could affect road safety (see e.g. Graff Zivin and Neidell, 2012). For example, pollution

may drivers render more risk-taking and aggressive, and reduce cognitive performance.

Ideally, we would like to compare locations with randomly varying levels of pollution. A

problem is that air pollution is a result of traffic and therefore is not randomly assigned

across locations. Hence, the number of accidents per day may be affected by unobserved

confounders, such as population density of regions, speed limits, road designs and types,

etc.

Sager (2019) proposes an instrumental variable approach where temperature inversions

are used as an instrument for variation in pollution levels. In Figure 4.2 we illustrate

that temperature inversions are deviations from the norm that temperatures decrease

households where children are of the same gender are more likely to have another child.
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(a) NORMAL CONDITIONS (b) INVERSION EPISODE

Figure 4.2 – EXAMPLES OF SPURIOUS CORRELATIONS
Notes: In Figure 4.2a temperature is lower in higher altitudes so that pollutants rise and disperse. In Figure 4.2b a warmer layer at higher

altitudes prevents pollutants to rise.

with higher altitudes. During inversion episodes, warmer air at higher altitudes implies

that pollutants are ‘trapped’ close to the ground. Does this instrument meet the two

conditions for instrument validity? Most likely, because the instrument probably has a

strong impact on air pollution, while temperature inversions are random and are unlikely

to be correlated to economic conditions of locations.

The two-stage least squares estimation yields:

xi t = ζ+ηzi t +θci t +νi +νt +ξi t , (1st stage)

log yi t =α+βx̂i t +γci t +µi +µt +εi t , (2nd stage)
(4.9)

where xi t is the concentration of particulate matter (PM2.5) in region i on day t and yi t

is the number of vehicles involved in accidents. zi t is a measure of night-time inversion

magnitude, ci t are control variables capturing weather conditions, and {νi ,µi } and

{νt ,µt } are region and day fixed effects respectively.

The traffic and weather data are from the UK between 2009 and 2014. Table 4.2 reports

the main results. Columns (1)-(3) show the first-stage results. It is shown that inversion

strength has a strong and significant impact on the concentration of particulate matter.

When fixed effects and weather controls are included, the coefficient in column (3) indi-

cates that an additional degree in inversion strength leads to an increase of 1.395µg/m3

in daily average PM2.5 concentrations. The first-stage F-statistic is well above 10 in all

specifications. Columns (4)-(6) of Table 4.2 show the second-stage results. The most con-

vincing specification in column (6) with fixed effects and controls imply that a 1µg/m3

increase in PM2.5 concentration leads to an increase in accidents of 0.4%. This effect is

statistically significant at the 1% level, and although small, not economically negligible.
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Table 4.2 – POLLUTION AND ACCIDENTS

First-stage results Second-stage results

Dep. var.: PM2.5 Dep. var.: the log of number vehicles in accidents

(1) (2) (3) (4) (5) (6)

OLS OLS OLS 2SLS 2SLS 2SLS

Inversion strength (°C) 1.830*** 1.725*** 1.395***

(0.0967) 0.0831) (0.0771)

PM2.5 0.008*** 0.004*** 0.004***

(0.0022) (0.0008) 0.0010

Region-year fixed effects No Yes Yes No Yes Yes

Day-of-week fixed effects No Yes Yes No Yes Yes

Month fixed effects No Yes Yes No Yes Yes

Weather controls No No Yes No No Yes

Number of observations 265,723 265,723 247,106 265,723 265,723 247,106

Kleibergen-Paap F-statistic 358.5 430.8 327.3 358.5 430.8 327.3

Notes: Cluster-robust standard errors are in parentheses, allowing for two-clustering over NUTS3 regions and days. ***

p < 0.01, ** p < 0.05, * p < 0.10.

4.3 QUASI-EXPERIMENTAL METHODS

4.3.1 THE MAIN IDEA

There is a trend in applied spatial economics to use quasi-experimental variation in variables

of interest to pin down a causal effect of xi on yi (Gibbons and Overman, 2012). These

shocks can relate to national policy changes, (arbitrary) policy rules, historic events such as

earthquakes and bombings, etc. These shocks cannot be influenced by individual decision

makers and are therefore more likely to provide exogenous variation in xi . If the shock is

really random, this is good news as the selection bias will be zero (recall equation (3.5)) A

concern with using these kind of shocks is that shocks may not only impact the variable

xi but also other (omitted) variables. For example, say you are interested in the effect of

pollution on accidents and you consider to use the Covid-19 crisis as a shock to pollution, the

problem is that Covid-19 did not only affect pollution, but also many other factors. Whether

a quasi-experimental shock is really random depends highly on the research context and

question at hand.

A general concern that applies to quasi-experimental identification strategies is that results

may not be generalisable (Gibbons and Overman, 2012). Like in randomised experiments

and IV, if effects of xi are heterogeneous, it may be that the estimated β cannot be extrapo-

lated to the general population. Most researchers agree, however, that it is better to have

plausibly causal estimates for a specific group in the population, than to estimate non-causal

parameters without particular meaning for the whole population (Imbens, 2010; Gibbons

and Overman, 2012).

IDENTIFICATION AND ESTIMATION 27



ALTERNATIVE IDENTIFICATION STRATEGIES

Application 4 — The Berlin Wall and agglomeration economies. Ahlfeldt et al. (2015)

is interested in measuring the magnitude of agglomeration economies, which are cost

savings arising from urban agglomeration, i.e. higher density, due to reductions in

transport costs of goods, people and ideas (Glaeser, 2008). However, it is generally hard

to distinguish between agglomeration economies and attractive features of a location

that attracts firms (e.g. geographic features like rivers, local policies, etc.) (Koster et al.,

2014).

Ahlfeldt et al. (2015) aim to exploit quasi-experimental variation in Berlin’s density

of economic activities to identify the importance of agglomeration economies. More

specifically, Berlin has been divided in East and West-Berlin from 1961 until 1989 (see

Figure 4.3). Especially in later years it was essentially impossible to travel from East to

West Berlin and therefore locations on both sides of the Berlin Wall could not benefit from

each other’s economic activities (i.e. they could not benefit from each other’s density).

The building of the wall (the division), as well as its fall in 1989 (the reunification), can

be interpreted as a shock to the economy of the city.

Here we consider the effects two outcome variables: the log of floor space prices and the

log of employment. Let’s consider the following specification:

∆yi =α+
K∑

k=1

βk Ii k +µi∈g +εi , (4.10)

where∆yi is the change in the outcome variable in block i after one of the two shocks, Ii k

denotes indicator variables for whether block i lies within a 500m intervals, denoted by

k, from the pre-war central business district (CBD) (i.e. ‘Mitte’), while βk are coefficients

to be estimated. µi∈g are district g fixed effects.

Table 4.3 reports the results. In column (1) we observe that the rent has strongly dropped

after the division for locations close to the CBD (relative to those far away). For example,

the decrease in rents within 500m of the CBD due to division is (e−0.567 −1)×100 = 43%

(see equation (2.6)) as compared to locations that are further than 3km away (which

is the reference category). The decrease in rents become smaller once a location is

further away from the CBD. A likely explanation is provided in column (2) where it is

shown that the decrease in employment density also seems to be greater close to the

CBD (although the results are somewhat imprecise). The effects are statistically and

economically significant.

In columns (3) and (4) we show similar results but now for reunification. The effects are

the opposite as the CBD became relatively more central after reunification. For example,

the first coefficient in column (3) indicates that rents within 500m of ‘Mitte’ increased

by 50%, while employment increased by an astonishing 384%. However the effects are

more localised and dissipate within 2km.

Ahlfeldt et al. (2015) then set-up a structural general equilibrium to use this quasi-
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Figure 4.3 – THE BERLIN WALL

experimental variation in rents and density to estimate the magnitude and spatial extent

of agglomeration economies, showing that these are very important within cities.

4.3.2 REGRESSION-DISCONTINUITY DESIGN

A specific example of a quasi-experimental research method is the so-called Regression-

Discontinuity Design (RDD). Let’s assume we have a treatment variable xi that is discrete

and dependent on a continuous variable ri :

xi =
{

1, if ri ≥ r0;

0, if ri < r0.
(4.11)

We are interested in the effects of the treatment on an outcome variable yi :

yi =α+βxi +γri +εi . (4.12)

Note that xi here is a fully deterministic function of the variable ri , which we refer to it as

the running variable. In other words, if you know the value for ri you also know whether

someone received treatment. In case of a fully deterministic function this is known as a

sharp RDD.

Let’s provide an example. Consider the case where you study the effects of study grants on
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Table 4.3 – RENTS, EMPLOYMENT AND THE BERLIN WALL

Division Reunification

Rents (log) Empl. (log) Rents (log) Empl. (log)

(1) (2) (3) (4)

CBD 0-500m -0.567*** -0.691* 0.408*** 1.574***

(0.071) (0.408) (0.090) (0.479)

CBD 500-1000m -0.422*** -1.253*** 0.289*** 0.684**

(0.047) (0.293) (0.096) (0.326)

CBD 1000-1500m -0.306*** -0.341 0.120*** 0.326

(0.039) (0.241) (0.033) (0.216)

CBD 1500-2000m -0.207*** -0.512*** -0.031 0.336**

(0.033) (0.199) (0.023) (0.161)

CBD 2000-2500m -0.139*** -0.436*** 0.018 0.114

(0.024) (0.151) (0.015) (0.118)

CBD 2500-3000m -0.125*** -0.280*** -0.000 0.049

(0.019) (0.130) (0.012) (0.095)

District fixed effects Yes Yes Yes Yes

Number of observations 6,260 2,844 7,050 5,602

Kleibergen-Paap F-statistic 0.51 0.12 0.32 0.03

Notes: Data on pre-division is from 1936, during the division it is from 1986 and from reunification it is

from 2006. Standard errors adjusted for spatial correlation are in parentheses. *** p < 0.01, ** p < 0.05,

* p < 0.10.

wages 10 years later, denoted by yi . If students receive study grants, then students are more

likely to spend more time on their studies, which would make them more productive later.

Now suppose that study grants are given to students based on their grades (e.g. observed for

their first year of their study). Let’s assume that the running variable are grades, denoted by

ri . Further, assume that a student always receives a grant if her grades exceed r0. Figure 4.4a

shows an example of regression (4.12).

We observe a positive linear relationship between grades ri and wages yi , which makes

sense as students with higher grades (who tend to be students who are brighter and study

harder) are expected to earn more later. However, at r0 we observe a jump in yi . This is

exactly the treatment effect of the grant. Note that controlling for the running variable is very

important, as comparing someone with ri = 1 to ri = 0 would not only capture the treatment

effect but also a selection effect because students with higher grades receive higher wages

10 years later.

In this example, we assume a linear relationship between ri and yi . However, in real-life data

there is not much reason to assume that this linear relationship exactly holds true. More

specifically, we would prefer:

yi =α+βxi + f (ri )+εi , (4.13)

where f (·) is some unspecified function of the running variable. We may for example use

polynomials to estimate f (·), implying that we include ri ,r 2
i

,r 3
i

etc. Figure 4.4b shows an
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(a) LINEAR E[yi |ri ]

(b) NON-LINEAR E[yi |ri ]

(c) NON-LINEARITY MISTAKEN FOR A DISCONTINUITY

Figure 4.4 – THE SHARP REGRESSION-DISCONTINUITY DESIGN

Notes: These figures are reproduced from Angrist and Pischke (2008).

example. Here again we observe a jump in wages at r0 at the moment students receive the

grant.

That it is important to control for the running variable is illustrated in Figure 4.4c. With a

linear function of ri , we mistakenly would conclude that the grant has a positive effect on

wages. However, if we control more flexibly for the running variable, we do not see a jump in
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the regression function and β≈ 0. Hence, in any RDD one should show sensitivity of the

results to different specifications of the running variable.

To circumvent this issue, one may also focus on a small area (2 ·δ) close to the cut-off r0.

Let’s consider:

E[yi |r0 −δ< ri < r0] ≈ E[y1i |ri = r0],

E[yi |r0 ≤ ri < r0 +δ] ≈ E[y0i |ri = r0],
(4.14)

so that:

lim
δ→0

E[yi |r0 −δ< ri < r0]−E[yi |ri = r0 ≤ ri < r0 +δ] = E[y1i − y0i |ri = r0]. (4.15)

The above equations imply that if we compare students that just got the grant with students

that just did not got the grant (so when δ→ 0) we identify the treatment effect of the grant.

In practice there is a trade-off because if we only include students that are essentially at

the trade-off we have too few observations to estimate the effect of interest. Hence, we

re-emphasise that when adopting an RDD one should carefully investigate whether the

treatment effect is robust to various values of δ, implying how many observations you

include on both sides of the threshold. The value of δ is referred to as the bandwidth.

We have seen above that OLS will provide you with the average treatment effect, if the

control variables (including fixed effects) nullify the omitted variable bias. In contrast, the

IV approach will provide you with the local average treatment effect (LATE). How does this

hold for the Regression Discontinuity Design? It is straightforward to see that this design

provides you with the LATE. Specifically, suppose that β varies for different levels of the

running variable r . For example, it is very plausible that the effect of a grant on wages differs

with the skills and ambitions level of students. This implies that the effect estimated using

the Regression Discontinuity Design depends on the level of r0, so the estimated effect will

be a LATE, defined by the sample close to r0.

In many real-life applications assignment is not fully deterministic. In the example of stu-

dents receiving a grant when there grades exceed r0 it is more likely that not all students

receive a grant when ri > r0, but that this also depends on other factors (say family back-

ground, past achievements, etc.). It may also be the case, that some students who have

grades just below r0 will get the grant, for example, if they can show that where ill during

the exams. Nevertheless, there is still a large jump in the probability to receive the grant

when ri > r0, denoted by P[xi = 1|ri ]. When there is a jump in the probability of receiving

treatment at some point, we refer to a fuzzy RDD. More formally, we have:

P[xi = 1|ri ] =
{

g1(ri ), if ri ≥ r0;

g0(ri ), if ri < r0, where g1(ri ) 6= g0(ri ).
(4.16)

Let’s assume here that treatment is more likely for higher values of the running variable, so
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g1(ri ) > g0(ri ).26 The relationship between the probability of treatment and the running

variable then can be expressed as:

P[xi = 1|ri ] = g0(ri )+
(

g1(ri )− g1(ri )
)

zi , (4.17)

where zi = I(ri ≥ r0). Hence, the dummy variable zi indicates the point where the probability

on receiving the treatment is expected to jump.

Angrist and Pischke (2008, pp. 259-263) show that a fuzzy RDD leads to a standard two-

stage least square estimation, where the discontinuity in the running variable is used as an

instrument:

xi = ζ+ηzi + g (ri )+ξi , (1st stage)

yi =α+βx̂i + f (ri )+εi , (2nd stage)
(4.18)

So in the first stage we regress the treatment variable on a dummy indicating, which we

will call the instrument, whether ri exceeds r0 (i.e. so whether the grade is high enough

to possibly obtain a grant.), as well as a flexibly function of the running variable ri . In the

second stage the fitted value of xi is used to estimate the causal effect of xi on yi .

Because the fuzzy design can be interpreted as an IV approach, one has to consider whether

zi satisfies the two above-mentioned conditions for instrument exogeneity (relevance and

exogeneity). Instrument relevance is usually not so much an issue: if a minimum grade of r0

is really necessary to obtain the grant, there is usually a strong increase in the probability to

obtain the grant and cov[xi , zi 6= 0]. Instrument exogeneity cov[xi ,εi = 0] is also met as long

as one controls flexibly for the running variable. Consider comparing students that just have

a too low grade (ri < r0) with students that just have high enough grades, the only difference

in wages at r0 is attributable to jump in the probability to receive the grant.

When interested in applying RDDs in practice, we strongly advise you to have a careful look at

Imbens and Lemieux (2008) and Lee and Lemieux (2010), which are excellent introductions

in all the dos and don’ts of RDDs.

Application 5 – Urban renewal and neighbourhood attractiveness. There are many

large-scale urban renewal projects aiming to improve built environment and reduce

social inequality. Koster and Van Ommeren (2019) evaluate whether such policies are

effective in making neighbourhoods more attractive by looking at house price differences

before and after implementation of a large-scale programme in the Netherlands. This

so-called Krachtwijken-scheme invested about a billion euro in 83 deprived neighbour-

hoods from 2008 onwards mainly by improving public housing. These neighbourhoods

where ranked according to a so-called deprivation score, which we refer to as z0. We

show examples of targeted neighbourhoods for Amsterdam in Figure 4.5. We gather data

on 434,033 housing transactions of privately-owned properties in 3,138 neighbourhoods

covering whole of the Netherlands between 2000 and 2014.

26Note that if students never get the grant with grades below r0, then g0(ri ) = 0.
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In an ideal setting, one would assign randomly treatment to neighbourhoods. A main

issue in identifying the causal effect of the programme is that particularly deprived

neighbourhoods with low house prices have been selected. Hence, a naive regression

of log house prices on a dummy indicating whether a neighbourhood is part of the

programme would lead to a strong negative coefficient.

To address endogeneity concerns we first-difference the data, so that we have:

∆yi t =∆α+β∆xi t +γ∆ci t +∆µt +∆εi t (4.19)

where∆yi t is the log difference of house price between year t1 and t0 and xi t is a dummy

indicating whether the neighbourhood has been treated. While first-differencing may

mitigate the selection effect, one may still be concerned that more deprived neighbour-

hoods have different price trend, e.g. due to gentrification or trends in crime rates.

We therefore apply an RDD. In Figure 4.6 we plot assignment as a function of the depri-

vation z-score. There is a clear discrete jump in the probability of treatment at ri = 7.3.

However, some neighbourhoods were not treated despite having a sufficiently high score.

Moreover, two neighbourhoods with scores lower than ri were eventually treated. This

implies that we have a fuzzy RDD: there is a jump of the probability to receive treatment

at ri = 7.3. Hence, we have a two-stage least squares estimation procedure:

∆xi t =∆ζ+η∆zi t +θ∆ci t +∆νt +∆ξi t , if r0 −δ< ri < r0 +δ, (1st stage)

∆yi t =∆α+β∆x̂i t +γ∆ci t +∆µt +∆εi t , if r0 −δ< ri < r0 +δ, (2nd stage)
(4.20)

Hence, we keep changes in prices and the treatment status with neighbourhoods that

have a z-score that is sufficiently close to ri , i.e. with a difference that is smaller than δ.

The results do not very much for the chosen bandwidth. Here we discuss results using a

recommended bandwidth δ using a procedure proposed by Imbens and Kalyanaraman

(2012). Table 4.4 reports the main results. In column (1) we show that when first-

differencing the data we find a positive effect of the KW investment programme of

(e0.0441 − 1)× 100 = 4.5%. The effect is statistically significant at the 1% level. When

employing the fuzzy RDD we find an effect of 3.3%. Although the effect is slightly lower,

the effect is not statistically significantly different from the estimate in column (1). Hence,

although price trends are somewhat more positive in deprived neighbourhoods, the bias

is rather small.

Are the estimates economically meaningful? Yes, a back-of-the-envelop calculation in

Koster and Van Ommeren (2019) shows that the total increase in house prices, capturing

the increased attractiveness due to the programme, is likely larger than the total invest-

ment costs. This means that the return on investment of a place-based policy which

makes poor neighbourhoods more attractive is high.
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Figure 4.5 – KRACHTWIJKEN IN AMSTERDAM IN 2008

Figure 4.6 – ASSIGNMENT AND THE Z-SCORE

5 STANDARD ERRORS

To conclude whether an effect is statistically significant, it is important to obtain reasonable

standard errors. In this Section we discuss three issues that you should bear in mind when

estimating the standard errors of the effect: (i) heteroscedasticity, (ii) clustering and (iii)

serial correlation.
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Table 4.4 – URBAN RENEWAL AND HOUSE PRICES

(Dependent variable: the change in the log of house prices)

First-differences +Fuzzy RDD

(1) (2)

∆KW investment 0.0441*** 0.0329***

(0.0114) (0.0122)

Number of observations 169,664 22,589

R2-within 0.375

Kleibergen-Paap F-statistic 5444

Bandwidth, δ 3.383

Notes: We exclude observations within 2.5km of targeted neighbourhoods to avoid picking

up spillover effects beyond the neighbourhood boundaries. In column (3) the change in the

KW investment is instrumented with the change in the eligibility based on the scoring rule.

Standard errors are clustered at the neighbourhood level and in parentheses; *** p < 0.01,

** p < 0.5, * p < 0.10.

Figure 5.1 – HETEROSCEDASTICITY

5.1 HETEROSCEDASTICITY

What is heteroscedasticity? This is essentially the observation that the variance of your

residuals change once the values of xi changes, as displayed in Figure 5.1. This may be

an issue as statistical packages (such as Stata) provide standard errors assuming that the

variance of the residuals is constant (i.e. homoscedasticity) as the default option.

Fortunately, the issue of heteroscedasticity is not a major problem in practice. Just use

so-called robust standard errors. These standard errors are asymptotically valid, also in the

presence of heteroscedasticity (asymptotically means when the number of observations

approaches infinity). Hence, as a general rule-of-thumb use standard errors that are robust

to the presence of heteroscedasticity. Almost always, these standard errors somewhat exceed

the standard errors assuming homoscedasticity (think about 10-20%), so by using robust

standard errors, your conclusion will be conservative (i.e. you may conclude that there is no

effect, while actually there is an effect.)
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The only worry arises when having a a small sample (there are no very clear rules when a

sample is small, but think in the order of <1000 observations). Although robust standard

errors are asymptotically valid (so when the number of observations goes to infinity), these

are biased for small sample (Angrist and Pischke, 2008). Hence, for small samples, the

researcher should check whether heteroscedasticity is an issue and whether robust standard

errors are smaller from standard errors that require homoscedasticity.

5.2 CLUSTERING

A more problematic issue – particularly for spatial economists who are interested in policies

that differ by area and who use individual data – is the assumption in OLS that observations

are independent from each other.

Let’s consider the case that you are interested in the effects of municipal taxes on individual

well-being, to see if higher taxes imply a better provision of public goods. We would then

have the following bivariate regression (ignoring any endogeneity issues):

yi g =α+βxg +εi g , (5.1)

where yi g is the well-being of an individual i living in municipality g , and xg is the tax rate

that only varies at the municipal level.

However, because xg only varies at the municipal level, there is likely correlation between

residuals of individuals i and j within municipality g :

E[εi g ε j g ] = ρεσ
2
ε > 0, (5.2)

where ρε is the residual intra-municipality correlation coefficient and σ2
ε is the residual

variance. In other words, the error term has a group structure like εi g = ψg +ωi g and

individual observations are not independent. Moulton (1990) shows that this may lead to

much too small standard errors.

We think this is intuitive. Please recall the standard formula for the standard error of β̂,

which assumes that all observations are independent of each other:

SE(β̂) =
σεp

N

1

σx
, (5.3)

where N is the number of observations. As we have remarked above, σβ becomes smaller

once N increases. But also notice that the standard error becomes smaller for a larger

standard deviation in the x variable. We find this also intuitive. If you have lots of variation

in the x variable, then there is more information in the data to estimate β more precisely

(see Angrist and Pischke, 2014, p. 96, and Figure 2.3).

The standard error given intra-municipality correlation is more complicated, and less intu-

itive. Therefore, let us make the extreme assumption that the intra-municipality correlation
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is equal to 1, whereas the number of municipalities is equal to G , so where G is much smaller

than N . This is extreme, of course, as it implies that everyone within the municipality has

the same well-being, but this assumption proves the point. In this case, the standard error

can be calculated as:

SE(β̂) =
σεp

G

1

σx
, (5.4)

because there is only variation between municipalities, so the relevant number of obser-

vations refers to the number of municipalities. Hence, the standard error is
p

N /G larger,

when erroneously was assumed that the observations are independent. For example, in this

example, if you would have 9,000 individual observations and only 90 municipalities, your

standard error would be 10 times larger than you think, which most likely would affect your

conclusion. Because intra-group correlation is usually non-negligible, but far less than one,

it is frequently the case that the standard errors are several times larger when this issue is

ignored.

More intuitively. In the context of this example, what is the number of observations to

consider: 9000 or 100? We think it is the latter, because taxes vary only at the municipality

level. Even if you would increase the number of observations per municipality, you would

not increase variation in terms of levels of taxation (i.e. the standard deviation of taxation,

σx , remains the same), so the standard errors remain the same. However, if you will be able

to obtain more information on about 10 other municipalities, then your standard errors

would approximately fall by more than 5% (i.e. 1−
p

100/90)×100).

Fortunately, there is a relatively straightforward method to adjust standard errors by cluster-

ing the standard errors at the corresponding level. In the example, one should cluster the

standard errors at the municipality level. This almost always lead to higher standard errors,

implying that you are less likely to reject the null-hypothesis that β= 0. Please note that clus-

tering should also be applied when using other regression models, such as two-stage least

squares, Poisson regression and Logit models. As long as observations are not independent,

this should be addressed somehow by adjusting the standard errors.27

When clustering, one should keep in mind that errors that allow for correlation within

groups also have the problem that for few clusters the correlation ρε is underestimated

and therefore clustered standard errors are incorrect. But what is ‘few’? The answer is not

entirely clear, but a general rule-of-thumb is that when the number of clusters exceed 50

one is reasonably safe (Angrist and Pischke, 2008).

5.3 SERIAL CORRELATION

A final issue that is worth mentioning is the presence of serial correlation in panel data. Like

in the situation with aggregate variables there is correlation between residuals, but now

27What if you include a set of variables that are measured at different (spatial) levels? Recent packages in

Stata, such as reghdfe allow for clustering at different levels.
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not within groups, but between individuals over time: E[εi tεi t−1] 6= 0. In case both your

dependent variable and main independent variable of interest are at the same level (e.g. both

individual, or both at the municipality level), then serial correlation will be acknowledged in

the calculations of the standard error so you do not have to worry.

Issues are more complicated, when you have individual data and the independent variable

of interest is an aggregated variable. Although Angrist and Pischke (2008) acknowledge that

this issue is still under study, a quick-and-dirty fix is to cluster at the unit at which you expect

serial correlation. Going back to the example of municipal taxes and well-being, say that

you have panel data with observations about tax levels for several years, to estimate the

following model:

yi g t =α+βxg t +εi g t . (5.5)

Note that xg t is measured at the municipality-year level (it varies between municipalities, as

well as between years). One recommended solution is to cluster at the municipality level

rather than at the municipal-year level to mitigate concerns related to serial correlation.

6 SUMMARY

In this syllabus we have provided a step-by-step guide to undertake a research project. In

Section 2 we considered eight steps that should be considered in any project:

1. Formulate your hypotheses;

2. Determine the ‘treatment’ variable(s) and the ‘outcome’ variable(s);

3. Think of an identification strategy to identify causal effects;

4. Select samples, discuss measurement error, and provide descriptives;

5. Determine functional form of variables of interest;

6. Think of different issues in estimating standard errors;

7. Estimate the model and interpret the results;

8. Provide robustness checks of the results.

Most of applied econometrics is particularly concerned with Step (3), which is the iden-

tification of a causal effect of a treatment variable on the outcome variable. We show in

Section 3.1 that causality is in principle not guaranteed because people may self-select into

treatment, which we refer to as the omitted variable bias effect. We have discussed that

randomisation addresses problem. Hence, randomised experiments are in principle the

preferred method to identify a causal effect of a treatment.

Because randomised experiments are almost never possible in spatial economics, we con-

sider alternative identification strategies to plausibly measure a causal effect. We consider
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(i) adding controls, with an emphasis on adding several types of fixed effects, (ii) use instru-

mental variables, and (iii) exploit quasi-experimental variation in the treatment variable,

where we have particularly focused on the use of a regression-discontinuity design. Of

course, combinations of different identification strategies are possible and preferable if that

increases the belief that one can establish causality.

Finally, we paid attention to the estimation of the standard errors, which is step (6) in the

step-by-step guide. Heteroscedasticity – implying that the variance changes for different

levels of the dependent variable – is relatively straightforward to address in larger samples.

Clustering may address, or at least, mitigate concerns related to dependence in the data.

Please be aware that statistical significance does not mean that the effect is also economically

meaningful. We emphasise that providing a sound economic interpretation of the results is

paramount.

We end here with a quote from Angrist and Pischke (2008), which does apply to any research

project you may undertake in the future:

“Econometrics applied to coherent causal questions, regressions and 2SLS almost always

make sense. Your standard errors probably won’t be quite right, but they rarely are.

Avoid embarrassment by being your own best septic, and especially, DON’T PANIC!.”
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APPENDIX

A.1 RANDOM MEASUREMENT ERROR

Let’s return to measurement error in the dependent variable. Suppose you do not observe

yi , but you observe y∗
i

, where y∗
i
= yi +ui , where ui denotes random measurement error.

This implies that you aim to run the following regression:

yi =βxi +γci +εi , (A.1)

but you do estimate the following regression:

y∗
i −ui =βxi +γci +εi ,

y∗
i =βxi +γci +ωi ,

(A.2)

where ωi = εi +ui . In other words, the variance of the error term ωi is larger (because

V ar (ω) = V ar (ε)+V ar (u)), but otherwise (A.2) is essentially the same as (A.1). The only

consequence of a larger variance is that the predictive error will be larger.

Now suppose that there is measurement error in xi , so that you observe x∗
i
= xi +ui . In this

case you aim to estimate:

yi =βxi +γci +εi (A.3)

but you do estimate:

yi =β(x∗
i −ui )+γci +εi .

=βx∗
i +γci +εi −βui .

(A.4)

Now, by assumption, ui is positively correlated to x∗
i

, so εi −βui is correlated to x∗
i

, which is

not in line with the assumption of OLS.

More intuitively, consider the case that ui is very large compared to xi . Because x∗
i

is then a

random variable, β→ 0. Hence, in general, random measurement error in xi leads to a bias

towards zero of β.

A.2 LOG-LINEAR EQUATIONS AND ELASTICITIES

In Section 2.5 we claim that the elasticity is given by:

∂yi

∂xi

xi

yi
=

∂ log yi

∂ log xi
. (A.5)

To show this, let’s assume a standard log-linear regression equation:

log yi =β log xi +γci +εi , (A.6)
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where yi is the dependent variable measures for agent i ,xi is a continuous variable of

interest, and ci are control variables, while εi is an unobserved effect. Note that
∂ log yi

∂ log xi
=β.

By taking the exponent of (A.6), we can write:

yi = eβ log xi+γci+εi . (A.7)

Let’s now take the derivative of this function with respect to xi and use the chain rule of

differentiation:
∂yi

∂xi
= eβ log xi+γci+εi ×

1

xi
β. (A.8)

From (A.7) we know that yi = eβ log xi+γci+εi , so that (A.8) can be simplified to:

∂yi

∂xi
= yi ×β

1

xi
. (A.9)

By re-arranging and replacing β by
∂ log yi

∂ log xi
, we have:

∂yi

∂xi

xi

yi
=

∂ log yi

∂ log xi
. (A.10)

Hence, the regression coefficient β in a log-linear equation captures an elasticity.

A.3 AVERAGE TREATMENT EFFECTS

Please note the difference between the average treatment effect and the average treatment

effect on the treated. With randomisation, the average treatment effect is the same as the

average treatment effect on the treated because there is a randomised selection of people

based on the whole population.

Let’s consider β be the individual-causal effect of the treatment and π be the proportion of

population that takes the treatment (Morgan and Winship, 2015). Let’s make a distinction

between the average treatment effect on the treated (E[β|xi = 1]) and the average treatment

effect E[β]. The average treatment effect on the treated is defined as:

E[β|xi = 1] = E[y1i − y0i |xi = 1]

= E[y1i |xi = 1]−E[y0i |xi = 1],
(A.11)

while the average treatment effect is defined as:

E[β] =πE[y1i |xi = 1]+ (1−π)E[y1i |xi = 0]

−πE[y0i |xi = 1]+ (1−π)E[y0i |xi = 0]
(A.12)

Randomisation implies that E[y0i |xi = 1] = E[y0i |xi = 0] and E[y1i |xi = 1] = E[y1i |xi = 0],

implying that:

IDENTIFICATION AND ESTIMATION A2



REFERENCES

• The baseline outcome in the treatment group equals the baseline outcome in the

control group;

• People in the control group would experience the same increase in the outcome

variable if they were to be treated.

Hence, in settings where there is no randomisation, one should notice that, even after

addressing the selection bias, the average treatment effect on the population may be different

from the average treatment effect on the treated.

A.4 INSTRUMENTAL VARIABLES AND SUPPLY AND DEMAND FUNCTIONS

The use of IV is closely related to the estimation of (inverse)demand and supply functions,

and therefore closely related to economic theory. Recall that an inverse demand function

describes the (negative) effect of a price on the quantity demanded, whereas the inverse

supply function describes the effect of the price on the quantity supplied, which is usually

positive, because supplying more of a good is more costly.

We start from the notion that we do not observe the demand and supply function, but

we only observe prices and quantities which are in the outcome of the interaction of the

demand and supply functions, i.e. the equilibrium. Consequently, in general, if you regress

the quantity of a variable on its price, you will neither get a demand nor a supply function,

but a mixture of both functions. This is illustrated in Figure A1a. In this example, regression

of quantity on prices gives you a positive relationship, but does not provide any information

about the underlying functions.

IV approaches are very useful to disentangle demand and supply functions from each other.

We illustrate this in Figure A1b. When you aim to estimate demand functions using IV,

one employs an instrumental variable that shifts the supply function, but not the demand

function. Note in the figure that when you shift the supply function downwards (from S1

to S2), one gets information about the slope of the demand function. Similarly, when you

aim to estimate a supply function, one has to use an instrument which shifts the demand

function, but not the supply function.

Note in the figure that when you shift the demand function downwards (from D1 to D2 and

then to D3), one obtains information on the slope of the supply functions. Please keep in

mind that many variables determine both demand and supply and are therefore not useful

as instruments, but only as control variables.

Application A.1 — Estimating the demand and supply for parking. Van Ommeren and

Wentink (2012) are interested to estimate the employers’ demand and supply function of

parking that is offered to employees. Knowledge of both functions are key to determine

the welfare loss of distortionary income taxation. In almost all countries around the

world, employers offer parking for free to workers. One reason they do that is that

workers do not pay any income tax on receiving a free parking space. In contrast, wages
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(a) OBSERVATIONS ON PRICES AND QUANTITIES (b) INVERSE DEMAND AND SUPPLY FUNCTIONS

Figure A1 – DEMAND AND SUPPLY

which are taxed as income, so employers tend to offer more parking spaces to workers

than they would if parking spaces would be taxed as a fringe benefit. As a consequence,

one expects welfare losses in the employer parking market.

In Van Ommeren and Wentink (2012), the researchers used information about office

space rented by employers, including information about the number of parking spaces

rented, and the annual rent paid for each parking space. The age of the building rented

by the employer was used as an instrument to estimate the parking demand function.

The idea is that building age still has an effect on the costs of having a parking space

(in old buildings, e.g. constructed before the car was invented, it is very expensive to

add a parking space), so it affects the supply function, whereas the parking demand by

employees should not depend on the age of the building directly.

Table A1 reports the main results for parking demand. The coefficient in column (3)

shows that the price elasticity of demand, i.e. the effect of log price on log parking spaces,

is about −0.60 with a standard error of about 0.15.

The size of the office rented by the employer was used as an instrument to estimate the

parking supply function. The idea is that larger offices usually have more employees

which increases the demand for parking, whereas the cost per parking space should not

depend directly on number of employees. Van Ommeren and Wentink (2012) find that

the parking supply function is essentially horizontal, i.e. fully elastic, so the price/cost of

parking does not depend on the quantity supplied. For offices, mainly in the suburbs

of large cities, this makes sense, as having a larger parking lot usually means only using

more land, so the costs per parking space are constant; it mainly reflects the price of

land.

When estimating the demand as well as the supply function, the study used postcode

fixed effects as control variables. The idea is here that, presumably, the demand for

parking will vary over space (e.g. close to railway station it will be less than in the

suburbs), but so will supply costs (e.g. in the city centre, to convert land to parking will
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Table A1 – DEMAND FOR PARKING

(Dependent variable: the log of number of parking spaces)

2SLS 2SLS 2SLS

Baseline specification Add municipality f.e. Add area f.e.

(1) (2) (3)

Price (log) -0.824*** -0.918*** -0.612***

(0.146) (0.186) (0.150)

Controls (3) Yes Yes Yes

Year fixed effects (7) Yes Yes Yes

Municipality fixed effects (129) No Yes Yes

Area fixed effects (516) No No Yes

Number of observations 394,389 394,389 207,242

Kleibergen-Paap F-statistic 12.46 12.81 24.33

Notes: The instrument is the construction year of the property. Controls include the log of floor

area, the log of distance to the nearest highway ramp and the log of the distance to the nearest

railway station. Robust standard errors in parentheses; *** p < 0.01, ** p < 0.5, * p < 0.10.

be more expensive than in the suburbs). Adding these controls did not change the results

much, but makes the instruments stronger.

It appears that the welfare losses of providing free parking to employees are roughly

equal to about 10% of the parking building costs. Hence, loosely speaking, about 10% of

the parking building costs are wasted from an economic point of view. This excludes any

additional environmental and congestion costs because of increased driving.
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