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1. Introduction

▪ Hans Koster ➔
• Professor of Urban Economics and Real Estate

• h.koster@vu.nl 

• Lectures

• Programme director of STREEM (streem.sbe@vu.nl)

▪ Canvas

• Be aware of the recap materials under modules

• If there is anything unclear, let me know!
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1. Introduction

▪ A few announcements on the programme

• Enrol with the following link to the MSc STREEM 

announcement page https://canvas.vu.nl/enroll/FXW8BL

• Thesis support sessions: October 4 and 11, 12:45-13:30

• Drinks on October 28, 15:00, after exam
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1. Introduction

▪ This course

• Learn about advanced tools and techniques 

important for 

» Urban & Regional,

» Real Estate,

» Transport and 

» Environmental Economics

▪ Do not hesitate to ask questions during the class!

▪ Notation on slides

• Most important concept are underlined

• Questions (via Menti), exercises and applications→ On red slides 
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1. Introduction

▪ How to study:

→ Attend offline lectures and tutorials
→ Work together on assignments on campus
→ Read and study syllabus
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1. Introduction

▪ Tutorials

• Thomas de Graaff (t.de.graaff@vu.nl, 

thomasdegraaff.nl)

• For any questions on the assignments/

• tutorials please ask Thomas

▪ Please subscribe to groups on Canvas before Tuesday 23:59

• Groups of 3
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▪ This week

• Learn about how to deal with spatial data

• … and spatial econometrics

• Plan:

Lecture #1: Spatial data

Lecture #2: Spatial autocorrelation and regressions

Lecture #3: Spatial regressions (cont’d)
Assignment: Open space and school quality
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1. Introduction

▪ Some remarks on matrix notation

• Use bold symbols for vectors𝒙 = 𝑥11𝑥21𝑥31
• Use bold symbols and capitals for matrices𝑿 = 𝑥11 𝑥12 𝑥13𝑥21 𝑥22 𝑥23𝑥31 𝑥32 𝑥33
• Identity matrix𝑰 = 1 0 00 1 00 0 1→ 𝑰𝑿 = 𝑿
• Inverse 𝑿−𝟏 is matrix equivalent of 1/𝑥→ 𝑿−𝟏𝑿 = 𝑿𝑿−𝟏 = 𝑰
• More details in the appendix of the syllabus
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2. Space in economics

▪ Many economic processes are spatially 

correlated

• Tobler’s first law of geography

▪ Most economics models are “topologically 
invariant”

▪ New economic fields have emerged

• Urban economics

• New economic geography (NEG)

▪ Synergy with other fields

• Economic geography

• Regional science

• GIS
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▪ Economists and space
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▪ Spatial econometrics

▪ 40-50s – mainly domain of  statisticians

▪ Cliff and Ord (1973): “Spatial autocorrelation”

▪ Paelinck and Klaassen (1979): “Spatial 
Econometrics”

▪ Rapid growth since Anselin (1988)

▪ New estimators, tests and interpretation

• e.g. Kelejian and Prucha (1998, 1999, 2004, 

2007, 2010)
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2. Space in economics

▪ Spatial modelling is becoming increasingly 

important

• New and geo-referenced data

• Advanced software

• New methods and regression techniques!
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3. Spatial data structure

▪ Time is simple

• Natural origin

• No reciprocity

• Unidirectional

▪ Linear space (e.g. beach) is different

• No natural origin

• Reciprocity

• Unidirectional

𝑥𝑡−3 𝑥𝑡−2 𝑥𝑡−1 𝑥𝑡

𝑥1 𝑥2 𝑥3 𝑥4
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3. Spatial data structure

▪ Two-dimensional space becomes even more 

complex

• No natural origin

• Reciprocity

• Multidirectional

▪ 𝑖 = 1,2,3 can refer to point data, areas, grids

𝑥1
𝑥2𝑥3
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3. Spatial data structure

▪ First, we have to define the spatial structure of 

the data

▪ Specified through a spatial weights matrix

▪ Spatial weights matrix 𝑾:
• Consists of 𝑛 × 𝑛 elements

• Discrete or continuous elements

▪ How to define weights?

• Euclidian distance

• Network distance

• Spatial interactions

• Social networks 15
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3. Spatial data structure

▪ How to define spatial matrices?

▪ Contiguity matrix

• Adjacent ⇾ 1st order contiguous

• Neighbours of neighbours ⇾ 2nd order 

contiguous

▪ Distance matrix

• k-nearest neighbours

• Inverse distance weights (1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)

• Cut-off distance
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3. Spatial data structure

▪ Let’s provide an example of a contiguity matrix

𝑛1
𝑛2𝑛3
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𝑊 𝑛1 𝑛2 𝑛3 𝑛4𝑛1 0 1 1 0𝑛2 1 0 1 1𝑛3 1 1 0 0𝑛4 0 1 0 0

𝑛4
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o
m
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3. Spatial data structure

▪ Matrices can be standardised

• Different principles can be used

• Most common: row-standardisation:𝑤𝑖𝑗∗ = 𝑤𝑖𝑗σ𝑘=1𝑛 𝑤𝑖𝑘
where 𝑘 are other locations

▪ Interpretation of

▪ σ𝑗=1𝑛 𝑤𝑖𝑗: sum of connections to neighbours

• 𝑤𝑖𝑗∗ denotes the share of connections to 

neighbours
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3. Spatial data structure

▪ Remarks regarding distance weight matrices

• Check for exogeneity of matrix

• Connectivity

• Symmetry

• Standardisation

• Distance decay
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3. Spatial data structure

▪ Choice of distance decay is arbitrary

• Sometimes theory may help

• May also try to find the optimal decay 

parameter empirically
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3. Spatial data structure

▪ Choice of distance decay is arbitrary

• An alternative is to forget about specifying 𝑾
• Alternatively, use different 𝑥-variables 

capturing concentric rings

• Average of 𝑥-variable for different distance 

bands
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3. Spatial data structure

▪ Choice of distance decay is arbitrary

• e.g. 𝒚 = 𝛼𝒙𝟎−𝟏𝟎𝟎 + 𝛽𝒙𝟏𝟎𝟎−𝟐𝟎𝟎 + 𝛾𝒙𝟐𝟎𝟎−𝟑𝟎𝟎 + 𝜖
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𝒙𝟎−𝟏𝟎𝟎𝒙𝟏𝟎𝟎−𝟐𝟎𝟎𝒙𝟐𝟎𝟎−𝟑𝟎𝟎
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3. Spatial data structure

▪ How to define spatial weight matrix using 

software

• SPATWMAT in STATA, based on geographic 

coordinates

• SPWEIGHT in STATA

• Geoda

• SPATIAL STATISTICS TOOLBOX in ArcGIS

• SPDEP in R

▪ Concentric rings should be calculated manually

23

Spatial econometrics (1)

1. Introduction

2. Space in economics

3. Spatial data structure

4. MAUP

5. Summary



▪ Usually we do not have space-continuous data

• ‘Dots’ to ‘boxes’

▪ Data is aggregated at

• Postcode areas

• Municipalities

• Regions

• Countries

▪ Problems:

• Aggregation is often arbitrary

• Areas are not of the same size

▪ This may lead to distortions

• Modifiable areal unit problem (MAUP) 24
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▪ An illustration:

▪ Aggregation seems to be important!
25
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▪ Briant et al. (2010) investigate whether choice 

matters for regression results
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▪ MAUP is of secondary importance

• If 𝑦 and 𝑥 are aggregated in the same way

• Matters more for larger areas (e.g. regions)

• Use meaningful areas if possible

▪ Specification issues are much more important 
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Today:

▪ ‘Space’ in economics is becoming more and more 
important

▪ Incorporating space in econometric applications 

is not straightforward

▪ Important to define the spatial structure of the 

data

• Spatial weight matrices

• Modifiable areal unit problem
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Tomorrow:

▪ Spatial autocorrelation

▪ Spatial regressions

→ Subscribe to assignment groups before Tuesday, 

23:59.
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▪ This week

• Learn about how to deal with spatial data

• … and spatial econometrics

• Plan:

Lecture #1: Spatial data

Lecture #2: Spatial autocorrelation and regressions

Lecture #3: Spatial regressions (cont’d)

32

1. IntroductionSpatial econometrics (2)

1. Introduction

2. Spatial autocorrelation

3. Spatial regressions

4. Summary



2. Spatial autocorrelation

▪ Spatial autocorrelation between values

• Implies cov 𝑥𝑖 , 𝑥𝑗 = E 𝑥𝑖𝑥𝑗 − E 𝑥𝑖 ∙ E 𝑥𝑗 ≠ 0
• Again, 𝑗 refers to other locations

▪ Spatial autocorrelation, dependence, clustering

• Fuzzy definitions in literature
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2. Spatial autocorrelation

▪ How to measure spatial autocorrelation

• Moran’s I
• Focus on one variable 𝑥 (e.g. crime)

▪ H0: independence, spatial randomness

▪ HA: dependence

• On the basis of adjacency, distance, hierarchy
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2. Spatial autocorrelation

▪ Moran’s I is given by:

𝐼 = 𝑅𝑆0 × ෥𝒙′𝑾෥𝒙෥𝒙′෥𝒙 (4)

where 𝑅 is the number of spatial units𝑆0 is the sum of all elements of the 

spatial weight matrix𝑾 is the spatial weight matrix෥𝒙 = 𝑥 − ҧ𝑥 is a vector with the variable of 

interest
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2. Spatial autocorrelation

▪ Moran’s I

▪ Use row-standardised spatial weight matrix 𝑾!

▪ Recall that 𝐼𝑆 = ෥𝒙′𝑾෥𝒙෥𝒙′෥𝒙 (standardised 𝐼)
• Note similarity with OLS: መ𝛽 = 𝒙′𝒚𝒙′𝒙
• Hence: 𝑾෥𝒙 = 𝛼 + 𝐼෥𝒙 + 𝝐, where 𝛼 = 0

▪ Moran’s I is correlation coefficient (more or less)

• ≈ [−1,1]
• But: expectation E 𝐼 = − 1𝑁−1

▪ Visualisation

• Moran scatterplot
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2. Spatial autocorrelation

▪ Moran’s I

▪ How to investigate the statistical significance of 

(4)?

• 𝐼−E 𝐼var 𝐼 (5)

• However, var 𝐼 is difficult to derive

• E 𝐼 = Τ−1 (𝑛 − 1)
• Assume normal distribution of 𝐼 to 

approximate var 𝐼 under H0

• Or: bootstrapping/simulation

• See Cliff and Ord (1973) for more details

37

Spatial econometrics (2)

1. Introduction

2. Spatial autocorrelation

3. Spatial regressions

4. Summary



2. Spatial autocorrelation

▪ Moran’s I

▪ Also possible: correlation to other variables:𝐼𝑆 = ෥𝒙′𝑾෤𝒛෥𝒙′෥𝒙
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2. Spatial autocorrelation

▪ How to calculate Moran’s I using software

• SPAUTOC in STATA

• SPLAGVAR in STATA

• SPATIAL STATISTICS TOOLBOX in ArcGIS

▪ Alternative: Getis and Ord’s G

• Most of the time only Moran’s I is reported 
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2. Spatial autocorrelation

40

▪ Let’s try to answer the queston:

“Is social deprivation spatially clustered?”

▪ How to determine the most deprived 

neighbourhoods?

▪ Dutch government calculated deprivation z-

score for each neighbourhood

• Based on housing quality, safety, perception 

and satisfaction

• Important: the 83 most deprived 

neighbourhoods were selected for an 

investment of >€1 billion
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2. Spatial autocorrelation
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2. Spatial autocorrelation
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▪ Determine spatial autocorrelation

1. Determine distance between all 

neighbourhoods using centroids

2. Use inverse distance function 𝑤𝑖𝑗 = ൗ1 𝑑𝑖𝑗𝛾
to determine spatial weights in weight 

matrix

3. Calculate Moran’s I:   𝐖෤𝒛 = 𝛼 + 𝐼෤𝒛 + 𝝐
where ෤𝒛 = 𝒛 − ҧ𝑧 and 𝐖 is a row-

standardised weight matrix

• Note that 𝐖෤𝐳 is a vector

4. Bootstrap this procedure to estimate 

standard error (or use software)
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2. Spatial autocorrelation
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▪ Determine spatial autocorrelation. Note that 

• 𝐖෤𝐳 is a vector𝐖 × ෤𝐳 = 𝐖෤𝐳0 𝑤12 𝑤13𝑤21 0 𝑤23𝑤31 𝑤32 0 × ǁ𝑧1ǁ𝑧2ǁ𝑧3 = ………
• OLS: 𝜷 = 𝒙′𝒚𝒙′𝒙, while 𝑰 = ෤𝐳′𝑾෤𝐳෤𝐳′෤𝐳
• Notation: 

𝒙′𝒚𝒙′𝒙 = 𝒙𝑻𝒚 𝒙𝑻𝒙 −𝟏
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2. Spatial autocorrelation

44

▪ Determine spatial autocorrelation

1. Determine distance between all 

neighbourhoods using centroids

2. Use inverse distance function 𝑤𝑖𝑗 = ൗ1 𝑑𝑖𝑗𝛾
to determine spatial weights in weight 

matrix

3. Calculate Moran’s I:   𝐖෤𝒛 = 𝛼 + 𝐼෤𝒛 + 𝝐
where ෤𝒛 = 𝒛 − ҧ𝑧 and 𝐖 is a row-

standardised weight matrix

• Note that 𝐖෤𝐳 is a vector

4. Bootstrap this procedure to estimate 

standard error (or use software)
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2. Spatial autocorrelation
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▪ Calculate Moran’s I

• Using inverse distance function 𝑤𝑖𝑗 = 1𝑑𝑖𝑗𝛾
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2. Spatial autocorrelation
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▪ Spatial correlation in deprivation

• Local phenomenon?

• You do not know why scores are 

autocorrelated…
• No causal relationships!
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2. Spatial autocorrelation
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▪ It is important to make a distinction between 

global and local spatial autocorrelation 

• See Anselin (2003) for a discussion

▪ Global spatial autocorrelation

• Local shock affects the whole system

▪ Local spatial autocorrelation

• Local shock only affects the ‘neighbours’
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▪ Example: Consider an income increase for 

grocery store owner

▪ Local autocorrelation:

▪ Global autocorrelation:

2. Spatial autocorrelation
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▪ Example: Consider an income increase for 

grocery store owner

▪ Local autocorrelation:

▪ Global autocorrelation:

… spatial multiplier process

2. Spatial autocorrelation
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2. Spatial autocorrelation
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▪ Let’s define 𝒛 = 𝜆𝑾𝒛 + 𝝁
• Reduced-form of 𝒛 is 𝒛 = 𝑰 − 𝜆𝑾 −1𝝁
• With 𝜆 < 1

▪ A Leontief expansion yields:

• 𝑰 − 𝜆𝑾 −1 = 𝑰 + 𝜆𝑾+ 𝜆2𝑾2 + 𝜆3𝑾3 +⋯
▪ 𝑾𝟐 → There is an impact of neighbours of 

neighbours (as defined in 𝑾) although it is 

smaller (𝜆𝟐)

• Global autocorrelation

• Spatial multiplier process

• In practice: covariance may approach zero 

after a relatively small number of powers
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2. Spatial autocorrelation
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▪ Let’s define 𝒛 = 𝜆𝑾𝝁 + 𝝁
• This is already a reduced-form of 𝒛

▪ No impact of behaviour beyond ‘bands’ of 
neighbours

• Dependent on definition of 𝑾
• …Local autocorrelation

▪ Covariance is zero beyond these bands
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2. Spatial autocorrelation

52

▪ Local or global autocorrelation?

• Dependent on application

• Theory…
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3. Spatial regressions
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▪ Taxonomy:𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 +𝑾𝑿𝜸 + 𝝐 (1)

with𝝐 = 𝜆𝑾𝝐 + 𝝁 (2)

𝐖 is a row-standardised weight matrix𝜌, 𝛾, 𝛽, 𝜆 are parameters to be estimated
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3. Spatial regressions
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▪ Taxonomy:𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 +𝑾𝑿𝜸 + 𝝐 (1)

with𝝐 = 𝜆𝑾𝝐 + 𝝁 (2)

𝐖 is a row-standardised weight matrix𝜌, 𝛾, 𝛽, 𝜆 are parameters to be estimated
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3. Spatial regressions
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▪ Taxonomy:𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 +𝑾𝑿𝜸 + 𝝐 (1)

with𝝐 = 𝜆𝑾𝝐 + 𝝁 (2)

𝐖 is a row-standardised weight matrix𝜌, 𝛾, 𝛽, 𝜆 are parameters to be estimated
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3. Spatial regressions
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▪ Taxonomy:𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 +𝑾𝑿𝜸 + 𝝐 (1)

with𝝐 = 𝜆𝑾𝝐 + 𝝁 (2)

𝐖 is a row-standardised weight matrix𝜌, 𝛾, 𝛽, 𝜆 are parameters to be estimated
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▪ Taxonomy:𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 +𝑾𝑿𝜸 + 𝝐 (1)

with𝝐 = 𝜆𝑾𝝐 + 𝝁 (2)

𝐖 is a row-standardised weight matrix𝜌, 𝛾, 𝛽, 𝜆 are parameters to be estimated
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▪ Spatial lag model

• 𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 + 𝝁 (3)

• 𝜌 ≠ 0, 𝜸 = 0, 𝜆 = 0
• Spatial dependence in dependent variables

▪ Note similarity with time-series models

• AR Model

• 𝒚𝑡 = 𝜌𝒚𝑡−1 + 𝑿𝑡𝜷 + 𝝁𝑡 (4)
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▪ Spatial lag model

• 𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 + 𝝁 (3)

▪ The outcome variable influences everyone 

(indirectly)

• Global autocorrelation

▪ We may write𝐈 − 𝜌𝑾 𝒚 = 𝑿𝜷 + 𝝐𝒚 = 𝑰 − 𝜌𝑾 −𝟏 𝑿𝜷 + 𝝁 with𝑰 − 𝜌𝐖 −𝟏 = 𝑰 + 𝜌𝑾+ 𝜌2𝑾2 + 𝜌3𝑾3 +⋯
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▪ Spatial lag model

• 𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 + 𝝁 (3)

▪ We cannot estimate this by OLS because of 

reverse causality

▪ Recall AR-model:𝒚𝑡 = 𝜌𝒚𝑡−1 + 𝑿𝜷 + 𝝁𝑡 (4)

• We can estimate this in principle by OLS 

because 𝒚𝑡−1 is not influenced by 𝒚𝑡

3. Spatial regressionsSpatial econometrics (2)

1. Introduction

2. Spatial autocorrelation

3. Spatial regressions

4. Summary



61

▪ Spatial lag model

▪ Use maximum likelihood (ML) estimator

• Selects the set of values of the model 

parameters that maximizes the likelihood 

function

▪ Instrumental variables (IV)

• Instruments for 𝒚 may be 𝑾𝑿 and 𝑾2𝐗2
• Less efficient than ML, but feasible for ‘large’ 

datasets

• e.g. Kelejian and Prucha (1998)
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▪ Spatial cross-regressive model

• 𝒚 = 𝐗𝜷 + 𝜸𝑾𝑿 + 𝝁 (5)

• 𝜌 = 0, 𝜸 ≠ 0, 𝜆 = 0
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▪ Spatial cross-regressive model

• 𝒚 = 𝐗𝜷 + 𝜸𝑾𝑿 + 𝝁 (5)

▪ Include (transformations) of exogenous 

variables in the regression

• OLS is fine!

▪ Autocorrelation is local
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▪ Spatial error model

• 𝒚 = 𝐗𝜷 + 𝝐, with 𝝐 = 𝜆𝐖𝝐 + 𝝁 (6)

• 𝜌 = 0, 𝜸 = 0, 𝜆 ≠ 0
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▪ Spatial error model

• 𝒚 = 𝐗𝜷 + 𝝐, with 𝝐 = 𝜆𝐖𝝐 + 𝝁 (6)

▪ Omitted spatially correlated variables

• e.g. Ad-hoc defined boundaries

• Uncorrelated to 𝐗!

▪ Consistent estimation of parameters 𝜷
▪ But: inefficient

• 𝝐 are not i.i.d.

• Standard errors are higher in OLS

• 𝜷 may  be different in ‘small’ samples
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▪ How to apply these models in practice?

▪ SPAUTOREG in STATA

▪ SPATREG in STATA

▪ GeoDa (free software, also for large datasets)

▪ PACE'S SPATIAL STATISTICS TOOLBOX in MATLAB
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Today:

▪ Test spatial autocorrelation using Moran’s I

▪ Local vs. global spatial autocorrelation

▪ Incorporate space in regression framework

▪ Spatial regressions

• Spatial lag model

• Spatial cross-regressive model

• Spatial error model
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Tomorrow:

▪ Spatial regressions (extensions)

▪ When (not) to use spatial econometrics?

→ Subscribe to assignment groups before Tonight, 

23:59.
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▪ This week

• Learn about how to deal with spatial data

• … and spatial econometrics

• Plan:

Lecture #1: Spatial data

Lecture #2: Spatial autocorrelation and regressions

Lecture #3: Spatial regressions (cont’d)
When (not) to use spatial econometrics?

71

1. IntroductionSpatial econometrics (3)

1. Introduction

2. Spatial regressions

3. Mostly pointless?

4. Summary



72

▪ Spatial lag model

• 𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 + 𝝁 (3)

• 𝜌 ≠ 0, 𝜸 = 0, 𝜆 = 0
• Spatial dependence in dependent variables

▪ Spatial cross-regressive model

• 𝒚 = 𝐗𝜷 + 𝜸𝑾𝑿 + 𝝁 (5)

▪ Spatial error model

• 𝒚 = 𝐗𝜷 + 𝝐, with 𝝐 = 𝜆𝐖𝝐 + 𝝁 (6)
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▪ Three issues are on the table

1. When should you use these models?

2. Which of the models should you choose?

3. Can we combine these different spatial 

models?
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1. When should you use these models?

▪ Test for spatial effects

• H0: No spatial dependence

▪ Estimate standard OLS, 𝒚 = 𝐗𝜷 + 𝝐
• Calculate Moran’s I using ො𝝐
• 𝐼 = 𝑅𝑆0 × ො𝝐′𝑾ො𝝐ො𝝐′ො𝝐

▪ Moran’s I does have a rather uninformative 

alternative hypothesis

• HA: Spatial dependence…
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1. When should you use these models?

▪ Lagrange multiplier tests provide more 

information

• 𝐿𝑀𝜌 - test for presence of spatial lag

• 𝐿𝑀𝜆 - test for presence of spatial error
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1. When should you use these models?

▪ Test for spatial lag

1. Run OLS

2. Run 𝐿𝑀𝜌-test

H0: 𝜌 = 0
HA: 𝜌 ≠ 0
𝐿𝑀𝜆 = 𝟏𝐧𝑱 𝝐′𝑾𝒚𝒔𝟐 𝟐~𝜒12 (9)

with 𝑱 = Τ𝑾𝑿𝜷 ′𝑴 𝑾𝑿𝜷 + 𝑻𝒔2 𝑛𝒔2 and   𝐌 = 𝑰 − 𝑿 𝑿′𝑿 −𝟏𝑿′
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1. When should you use these models?

▪ Test for spatial error

1. Run OLS

2. Run 𝐿𝑀𝜆-test

H0: 𝜆 = 0
HA: 𝜆 ≠ 0
𝐿𝑀𝜆 = 𝟏𝐓 𝝐′𝑾𝝐𝒔2 2~𝜒12 (8)

with 𝐓 = 𝐭𝐫 𝐖′ +𝐖 𝑾 and 𝒔 = Τ𝝐′𝝐 𝑛
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1. When should you use these models?

▪ However, 

• Spatial errors and lags may be correlated

• May also be both present

▪ Use robust LM tests

• 𝐿𝑀𝜌∗ adds correction factor for potential 

spatial error

• 𝐿𝑀𝜆∗ adds correction factor for potential 

spatial lag

• Complex formulae!
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2. Which of the models should you choose?

▪ Estimate robust LM tests using software

▪ Common practice

• Choose and estimate the model for which the 

statistic is the most significant
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2. Which of the models should you choose?

▪ Estimate robust LM tests using software

▪ Common practice

• Choose and estimate the model for which the 

statistic is the most significant

▪ When 𝐿𝑀𝜆∗ and 𝐿𝑀𝜌∗ are statistically insignificant 

we may use OLS

▪ Robust LM-tests are typically provided in STATA 

output
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3. Can we combine these spatial models?

▪ In practice, both a spatial lag and spatial error 

may be present

▪ How to estimate?

• Use Kelejian and Prucha’s GS2SLS method

• Three-stage procedure!
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3. Can we combine these spatial models?

▪ Complicated stuff!

▪ Let software do the difficult calculations!

• SPAUTOREG in STATA

• SPIVREG in STATA
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▪ Gibbons and Overman (2012)

• “Mostly pointless spatial econometrics?”
• Nice read!

▪ We are interested to identify causal impacts 𝜷:𝒚 = 𝑿𝜷 + 𝝁
▪ Typical features of spatial data

• Unobserved variables correlated with 𝑿
• Omitted variable bias!

• Large datasets
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▪ Tempting to ‘fix’ omitted variable bias by 
including a spatial lag

▪ Let’s consider again:𝒚 = 𝜌𝑾𝒚 + 𝑿𝜷 + 𝝁
▪ Reduced-form:𝒚 = 𝜌𝑾 𝜌𝑾𝒚 + 𝑿𝜷 + 𝝁 + 𝑿𝜷 + 𝝁𝒚 = 𝜌𝑾 𝜌𝑾 𝜌𝑾𝒚 + 𝑿𝜷 + 𝝁 + 𝑿𝜷 + 𝝁 + 𝑿𝜷 + 𝝁…𝒚 = 𝑿𝜷 +𝑾𝑿𝜋1 +𝑾2𝑿𝜋2 +𝑾3𝑿𝜋3 + … + ෥𝝁
… The last equation suggests that in the end 𝒚 is just 

a non-linear function of the 𝑿-variables
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▪ Reduced form of spatial lag ≈ spatial cross-

regressive model

• It is hard to prove that spatial lag is ‘right’ 
model

• So, it is hard to distinguish empirically 

between the two types of models

• Only when there is a structural (network) 

model, a spatial lag may be appropriate
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▪ The spatial lag model does not solve the problem 

of omitted variable bias!

• Think of real exogenous sources of variation 

in 𝑿 to identify 𝜷
• Use instruments or quasi-experiments

• More discussion on identification strategies in 

last week!

▪ Estimate spatial error model?

• Spatial datasets are typically large

• Efficiency issues are usually not so important
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▪ Why then use spatial econometrics?

1. Exploratory tool to investigate spatial 

autocorrelation

2. Test for spatial dependence and 

heterogeneity, also in quasi-experiments and 

when using instruments

3. Investigate whether results are robust to 

spatial autocorrelation (using different 𝑾)

4. Spatial cross-regressive models are often 

useful and straightforward to interpret
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Today:

▪ Spatial regressions

• Spatial lag model

• Spatial cross-regressive model

• Spatial error model

▪ Use robust LM tests to distinguish between 

different types

• Or: combine using advanced methods

▪ Spatial econometrics are a useful tool, but not a 

way to identify causal effects
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Next week:

▪ Discrete choice methods and the random utility 

framework

▪ Revealed vs. stated preference data
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