Spatial econometrics (1)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Hans Koster → URBAN ECONOMICS.NL
 - Professor of Urban Economics and Real Estate
 - h.koster@vu.nl
 - Lectures
 - Programme director of STREEM (streem.sbe@vu.nl)

- Canvas
 - Be aware of the recap materials under *modules*
 - If there is anything unclear, let me know!

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- A few announcements on the programme
 - Enrol with the following link to the MSc STREEM announcement page <u>https://canvas.vu.nl/enroll/FXW8BL</u>
 - Thesis support sessions: October 4 and 11, 12:45-13:30
 - Drinks on October 28, 15:00, after exam

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- This course
 - Learn about advanced tools and techniques important for
 - » Urban & Regional,
 - » Real Estate,
 - » Transport and
 - » Environmental Economics

Do not hesitate to ask questions during the class!

- Notation on slides
 - Most important concept are <u>underlined</u>
 - Questions (via Menti), exercises and applications
 → On red slides

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- How to study:
 - → Attend offline lectures and tutorials
 - → Work together on assignments on campus
 - → Read and study syllabus

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Tutorials
 - Thomas de Graaff (t.de.graaff@vu.nl, thomasdegraaff.nl)
 - For any questions on the assignments/
 - tutorials please ask Thomas

- Please subscribe to groups on Canvas <u>before Tuesday 23:59</u>
 - Groups of 3

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

This week

- Learn about how to deal with spatial data
- ... and spatial econometrics

- Plan:
 - Lecture #1: Lecture #2: Lecture #3:
 - Assignment:

Spatial data
Spatial autocorrelation and regressions
Spatial regressions (cont'd)
Open space and school quality

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Some remarks on matrix notation
 - Use bold symbols for vectors

$$\boldsymbol{x} = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \end{bmatrix}$$

• Use bold symbols and capitals for matrices

$$\boldsymbol{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$$

• Identity matrix

 $\rightarrow IX = X$

$$\boldsymbol{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Inverse X^{-1} is matrix equivalent of 1/x $\rightarrow X^{-1}X = XX^{-1} = I$
- More details in the appendix of the syllabus

- **1. Introduction**
- 2. <u>Space in economics</u>
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Many economic processes are spatially correlated
 - Tobler's first law of geography
- Most economics models are "topologically invariant"
- New economic fields have emerged
 - Urban economics
 - New economic geography (NEG)
- Synergy with other fields
 - Economic geography
 - Regional science
 - GIS

- **1. Introduction**
- 2. <u>Space in economics</u>
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Economists and space

- **1. Introduction**
- 2. <u>Space in economics</u>
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Spatial econometrics

- 40-50s mainly domain of statisticians
- Cliff and Ord (1973): "Spatial autocorrelation"
- Paelinck and Klaassen (1979): "Spatial Econometrics"
- Rapid growth since Anselin (1988)
- New estimators, tests and interpretation
 - *e.g.* Kelejian and Prucha (1998, 1999, 2004, 2007, 2010)

- **1. Introduction**
- 2. <u>Space in economics</u>
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Spatial modelling is becoming increasingly important
 - New and geo-referenced data
 - Advanced software
 - New methods and regression techniques!

- **1. Introduction**
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Time is simple
 - Natural origin
 - No reciprocity
 - Unidirectional

$x_{t-3} \longrightarrow x_{t-2} \longrightarrow x_{t-1} \longrightarrow x_t$

- Linear space (e.g. beach) is different
 - No natural origin
 - Reciprocity
 - Unidirectional

$$x_1 \longleftrightarrow x_2 \longleftrightarrow x_3 \longleftrightarrow x_4$$

- **1. Introduction**
- 2. Space in economics
- 3. <u>Spatial data structure</u>
- 4. MAUP
- 5. Summary

- <u>Two-dimensional space</u> becomes even more complex
 - No natural origin
 - Reciprocity
 - Multidirectional

• *i* = 1,2,3 **can refer to point data, areas, grids**

- **1. Introduction**
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

 First, we have to define the spatial structure of the data

Specified through a <u>spatial weights matrix</u>

- Spatial weights matrix *W*:
 - **Consists of** $n \times n$ **elements**
 - Discrete or continuous elements

- How to define weights?
 - Euclidian distance
 - Network distance
 - Spatial interactions
 - Social networks

- **1. Introduction**
- 2. Space in economics
- 3. <u>Spatial data structure</u>
- 4. MAUP
- 5. Summary

• How to define spatial matrices?

- <u>Contiguity matrix</u>
 - Adjacent $\rightarrow 1^{st}$ order contiguous
 - Neighbours of neighbours → 2nd order contiguous

- Distance matrix
 - *k*-nearest neighbours
 - Inverse distance weights (1/distance)
 - Cut-off distance

- **1.** Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

• Let's provide an example of a <u>contiguity matrix</u>

to

from	W	n_1	n_2	n_3	n_4
	n_1	0	1	1	0
	n_2	1	0	1	1
	n_3	1	1	0	0
	n_4	0	1	0	0

- **1. Introduction**
- 2. Space in economics
- 3. <u>Spatial data structure</u>
- 4. MAUP
- 5. Summary

- Matrices can be standardised
 - Different principles can be used
 - Most common: *row-standardisation*:

 $w_{ij}^* = \frac{w_{ij}}{\sum_{k=1}^n w_{ik}}$ where *k* are other locations

- Interpretation of
 - $\sum_{j=1}^{n} w_{ij}$: sum of connections to neighbours
 - w_{ij}^* denotes the share of connections to neighbours

- **1. Introduction**
- 2. Space in economics
- 3. <u>Spatial data structure</u>
- 4. MAUP
- 5. Summary

- Remarks regarding <u>distance weight matrices</u>
 - Check for exogeneity of matrix
 - Connectivity
 - Symmetry
 - Standardisation
 - Distance decay

- 1. Introduction
- 2. Space in economics
- 3. <u>Spatial data structure</u>
- 4. MAUP
- 5. Summary

- Sometimes theory may help
- May also try to find the optimal decay parameter empirically

- **1. Introduction**
- 2. Space in economics
- 3. <u>Spatial data structure</u>
- 4. MAUP
- 5. Summary

- Choice of distance decay is arbitrary
 - An alternative is to forget about specifying *W*
 - Alternatively, use different *x*-variables capturing concentric rings
 - Average of *x*-variable for different distance bands

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Choice of distance decay is arbitrary
 - e.g. $y = \alpha x_{0-100} + \beta x_{100-200} + \gamma x_{200-300} + \epsilon$

- **1. Introduction**
- 2. Space in economics
- 3. <u>Spatial data structure</u>
- 4. MAUP
- 5. Summary

- How to define spatial weight matrix using software
 - SPATWMAT in STATA, based on geographic coordinates
 - SPWEIGHT in STATA
 - Geoda
 - SPATIAL STATISTICS TOOLBOX in ArcGIS
 - SPDEP in *R*
- Concentric rings should be calculated manually

- **1. Introduction**
- 2. Space in economics
- 3. Spatial data structure
- 4. <u>MAUP</u>
- 5. Summary

- Usually we do not have space-continuous data
 - 'Dots' to 'boxes'
- Data is aggregated at
 - Postcode areas
 - Municipalities
 - Regions
 - Countries
- Problems:
 - Aggregation is often arbitrary
 - Areas are not of the same size
- This may lead to distortions
 - Modifiable areal unit problem (MAUP)

- **1. Introduction**
- 2. Space in economics
- 3. Spatial data structure
- 4. <u>MAUP</u>
- 5. Summary

• An illustration:

Briant, Combes and Lafourcade (2010, JUE)

• Aggregation seems to be important!

- **1.** Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. <u>MAUP</u>
- 5. Summary

 Briant et al. (2010) investigate whether choice matters for regression results

22 Large squares (Ls)

4. Modifiable areal unit problem

- **1. Introduction**
- 2. Space in economics
- 3. Spatial data structure
- 4. <u>MAUP</u>
- 5. Summary

- MAUP is of secondary importance
 - If *y* and *x* are aggregated in the same way
 - Matters more for larger areas (*e.g.* regions)
 - Use meaningful areas if possible
- Specification issues are much more important

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. <u>Summary</u>

Today:

'Space' in economics is becoming more and more important

 Incorporating space in econometric applications is not straightforward

- Important to define the spatial structure of the data
 - Spatial weight matrices
 - Modifiable areal unit problem

- **1. Introduction**
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. <u>Summary</u>

- Spatial autocorrelation
- Spatial regressions

→ Subscribe to assignment groups before *Tuesday*, 23:59.

5. Summary

Spatial econometrics (1)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

Spatial econometrics (2)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

This week

- Learn about how to deal with spatial data
- ... and spatial econometrics

• Plan:

Lecture

Spatial data

Lecture #2: Lecture #3:

Spatial autocorrelation and regressions Spatial regressions (cont'd)

- **1. Introduction**
- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

- <u>Spatial autocorrelation</u> between values
 - Implies $\operatorname{cov}(x_i, x_j) = \operatorname{E}[x_i x_j] \operatorname{E}[x_i] \cdot \operatorname{E}[x_j] \neq 0$
 - Again, *j* refers to other locations

- Spatial autocorrelation, dependence, clustering
 - Fuzzy definitions in literature

- **1. Introduction**
- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

- How to measure spatial autocorrelation
 - <u>Moran's I</u>
 - Focus on one variable *x* (e.g. crime)

- H₀: independence, spatial randomness
- H_A: dependence
 - On the basis of adjacency, distance, hierarchy

- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

• Moran's *I* is given by:

$$I = \frac{R}{S_0} \times \frac{\tilde{x}' W \tilde{x}}{\tilde{x}' \tilde{x}}$$
(4)

where *R* is the number of spatial units S_0 is the sum of all elements of the spatial weight matrix *W* is the spatial weight matrix $\tilde{x} = x - \bar{x}$ is a vector with the variable of interest

- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Moran's I

- Use row-standardised spatial weight matrix W!
- Recall that $I_S = \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}}$ (standardised *I*)
 - Note similarity with OLS: $\hat{\beta} = \frac{x'y}{x'x}$
 - Hence: $W\widetilde{x} = \alpha + I\widetilde{x} + \epsilon$, where $\alpha = 0$
- <u>Moran's I is correlation coefficient</u> (more or less)
 - ≈ [-1,1]
 - **But: expectation** $E[I] = -\frac{1}{N-1}$
- Visualisation
 - Moran scatterplot

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- How to investigate the statistical significance of (4)?
 - $\frac{I \mathrm{E}[I]}{\sqrt{\mathrm{var}[I]}}$ (5)
 - However, $\sqrt{\operatorname{var}[I]}$ is difficult to derive
 - E[I] = -1/(n-1)
 - Assume normal distribution of *l* to approximate \sqrt{var[*l*]} under H₀
 - Or: bootstrapping/simulation

• See Cliff and Ord (1973) for more details

- **1.** Introduction
- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

Moran's I

• Also possible: correlation to other variables: $l_{S} = \frac{\widetilde{x}' W \widetilde{z}}{\widetilde{x}' \widetilde{x}}$

- **1. Introduction**
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- How to calculate Moran's I using software
 - SPAUTOC in STATA
 - SPLAGVAR in STATA
 - SPATIAL STATISTICS TOOLBOX in ArcGIS

- Alternative: Getis and Ord's G
 - Most of the time only Moran's *I* is reported

- **1. Introduction**
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Let's try to answer the queston:
 "Is social deprivation spatially clustered?"

How to determine the most deprived neighbourhoods?

- Dutch government calculated deprivation zscore for each neighbourhood
 - Based on housing quality, safety, perception and satisfaction
 - *Important:* the 83 most deprived neighbourhoods were selected for an investment of >€1 billion

2. <u>Spatial autocorrelation</u>

VRIJE UNIVERSITEIT AMSTERDAM

- 3. Spatial regressions
- 4. Summary

VU

The Hague

Utrecht

1. Introduction

- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

- Determine <u>spatial autocorrelation</u>
 - 1. Determine distance between all neighbourhoods using centroids
 - 2. Use inverse distance function $w_{ij} = 1/(d_{ij}^{\gamma})$ to determine spatial weights in weight matrix
 - 3. Calculate Moran's I: $W\tilde{z} = \alpha + l\tilde{z} + \epsilon$ where $\tilde{z} = z - \bar{z}$ and W is a rowstandardised weight matrix
 - Note that Wž is a vector
 - 4. Bootstrap this procedure to estimate standard error (or use software)

- **1. Introduction**
- <u>Spatial autocorrelation</u>
 Spatial regressions
- 4. Summary

- Determine spatial autocorrelation. Note that
 - Wž is a vector

$$\mathbf{W} \times \tilde{\mathbf{z}} = \mathbf{W}\tilde{\mathbf{z}}$$
$$\begin{array}{c} 0 & w_{12} & w_{13} \\ w_{21} & 0 & w_{23} \\ w_{31} & w_{32} & 0 \end{array} \times \begin{bmatrix} \tilde{z}_1 \\ \tilde{z}_2 \\ \tilde{z}_3 \end{bmatrix} = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix}$$

- - - ~

• OLS:
$$\beta = \frac{x'y}{x'x}$$
, while $I = \frac{\tilde{z}'W\tilde{z}}{\tilde{z}'\tilde{z}}$

• Notation:
$$\frac{x'y}{x'x} = x^T y (x^T x)^{-1}$$

1. Introduction

- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Determine <u>spatial autocorrelation</u>
 - 1. Determine distance between all neighbourhoods using centroids
 - 2. Use inverse distance function $w_{ij} = 1/(d_{ij}^{\gamma})$ to determine spatial weights in weight matrix
 - 3. Calculate Moran's I: $W\tilde{z} = \alpha + l\tilde{z} + \epsilon$ where $\tilde{z} = z - \bar{z}$ and W is a rowstandardised weight matrix
 - Note that Wž is a vector
 - 4. Bootstrap this procedure to estimate standard error (or use software)

- **1. Introduction**
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Calculate Moran's I
 - Using inverse distance function $w_{ij} = \frac{1}{d_{ij}^{\gamma}}$

- **1. Introduction**
- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

- Spatial correlation in deprivation
 - Local phenomenon?
 - You do not know *why* scores are autocorrelated...
 - No causal relationships!

- 1. Introduction
- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

- It is important to make a distinction between global and local spatial autocorrelation
 - See Anselin (2003) for a discussion

- Global spatial autocorrelation
 - Local shock affects the whole system

- <u>Local spatial autocorrelation</u>
 - Local shock only affects the 'neighbours'

- **1. Introduction**
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Example: Consider an income increase for grocery store owner
- Local autocorrelation:

Global autocorrelation:

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Example: Consider an income increase for grocery store owner
- Local autocorrelation:

Global autocorrelation:

49

- **1. Introduction**
- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

- Let's define $z = \lambda W z + \mu$
 - Reduced-form of z is $z = [I \lambda W]^{-1} \mu$
 - With $\lambda < 1$
- A Leontief expansion yields:
 - $[I \lambda W]^{-1} = I + \lambda W + \lambda^2 W^2 + \lambda^3 W^3 + \cdots$
- W² → There is an impact of neighbours of neighbours (as defined in W) although it is smaller (λ²)
 - Global autocorrelation
 - <u>Spatial multiplier</u> process
 - In practice: covariance may approach zero after a relatively small number of powers

- **1.** Introduction
- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

- Let's define $z = \lambda W \mu + \mu$
 - This is already a reduced-form of z
- No impact of behaviour beyond 'bands' of neighbours
 - Dependent on definition of W
 - ...Local autocorrelation
- Covariance is zero beyond these bands

- 1. Introduction
- 2. <u>Spatial autocorrelation</u>
- 3. Spatial regressions
- 4. Summary

- Local or global autocorrelation?
 - Dependent on application
 - Theory...

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

Taxonomy:

$$y = \rho W y + X \beta + W X \gamma + \epsilon$$
(1)
with
$$\epsilon = \lambda W \epsilon + \mu$$
(2)

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

• <u>Taxonomy:</u>

$$y = \rho W y + X\beta + W X\gamma + \epsilon$$
(1)
with
$$\epsilon = \lambda W \epsilon + \mu$$
(2)

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

• <u>Taxonomy:</u>

$$y = \rho W y + X \beta + W X \gamma + \epsilon$$
(1)
with
$$\epsilon = \lambda W \epsilon + \mu$$
(2)

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

Taxonomy:

$$y = \rho W y + X \beta + W X \gamma + \epsilon$$
(1)
with
$$\epsilon = \lambda W \epsilon + \mu$$
(2)

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

Taxonomy:

$$y = \rho W y + X \beta + W X \gamma + \epsilon$$
(1)
with
$$\epsilon = \lambda W \epsilon + \mu$$
(2)

- **1. Introduction**
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

Spatial lag model

- $\mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\mu}$ (3)
- $\rho \neq 0, \gamma = 0, \lambda = 0$
- Spatial dependence in dependent variables

- Note similarity with time-series models
 - AR Model
 - $\mathbf{y}_t = \rho \mathbf{y}_{t-1} + \mathbf{X}_t \boldsymbol{\beta} + \boldsymbol{\mu}_t$ (4)

- **1. Introduction**
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

- Spatial lag model
 - $y = \rho W y + X \beta + \mu$

(3)

- The outcome variable influences everyone (indirectly)
 - Global autocorrelation

We may write

 $(\mathbf{I} - \rho \mathbf{W})\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ $\mathbf{y} = (\mathbf{I} - \rho \mathbf{W})^{-1}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\mu}) \text{ with }$ $(\mathbf{I} - \rho \mathbf{W})^{-1} = \mathbf{I} + \rho \mathbf{W} + \rho^2 \mathbf{W}^2 + \rho^3 \mathbf{W}^3 + \cdots$

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

- Spatial lag model
 - $y = \rho W y + X \beta + \mu$ (3)

We cannot estimate this by OLS because of reverse causality

- Recall AR-model:
 - $\mathbf{y}_t = \rho \mathbf{y}_{t-1} + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\mu}_t \tag{4}$
 - We can estimate this in principle by OLS because y_{t-1} is not influenced by y_t

1	. . 1	
	Introd	luction
		luction

- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

Spatial lag model

- Use maximum likelihood (ML) estimator
 - Selects the set of values of the model parameters that maximizes the likelihood function
- Instrumental variables (IV)
 - Instruments for *y* may be *WX* and *W*²X²
 - Less efficient than ML, but feasible for 'large' datasets
 - e.g. Kelejian and Prucha (1998)

3. Spatial regressions

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

Spatial cross-regressive model

•
$$y = X\beta + \gamma WX + \mu$$

• $\rho = 0, \gamma \neq 0, \lambda = 0$

(5)

3. Spatial regressions

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

- <u>Spatial cross-regressive model</u>
 - $y = X\beta + \gamma WX + \mu$

(5)

- Include (transformations) of exogenous variables in the regression
 - OLS is fine!

Autocorrelation is local

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

- <u>Spatial error model</u>
 - $y = X\beta + \epsilon$, with $\epsilon = \lambda W\epsilon + \mu$ (6)
 - $\rho = 0, \gamma = 0, \lambda \neq 0$

3. Spatial regressions

- 1. Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

- Spatial error model
 - $y = X\beta + \epsilon$, with $\epsilon = \lambda W\epsilon + \mu$ (6)

- Omitted spatially correlated variables
 - e.g. Ad-hoc defined boundaries
 - Uncorrelated to X!

- Consistent estimation of parameters β
- But: inefficient
 - ϵ are not i.i.d.
 - Standard errors are higher in OLS
 - β may be different in 'small' samples

- **1.** Introduction
- 2. Spatial autocorrelation
- 3. <u>Spatial regressions</u>
- 4. Summary

- How to apply these models in practice?
- SPAUTOREG in STATA
- SPATREG in STATA
- GeoDa (free software, also for large datasets)
- PACE'S SPATIAL STATISTICS TOOLBOX in MATLAB

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. <u>Summary</u>

Today:

- Test spatial autocorrelation using Moran's I
- Local vs. global spatial autocorrelation
- Incorporate space in regression framework
- Spatial regressions
 - Spatial lag model
 - Spatial cross-regressive model
 - Spatial error model

- **1. Introduction**
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. <u>Summary</u>

Tomorrow:

- Spatial regressions (extensions)
- When (not) to use spatial econometrics?

→ Subscribe to assignment groups before *Tonight*, 23:59.

Spatial econometrics (2)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

Spatial econometrics (3)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

This week

- Learn about how to deal with spatial data
- ... and spatial econometrics

• Plan:

Lecture #1: Lecture #2: Lecture #3:

Spatial autocorrelation and regressions Spatial regressions (cont'd) When (not) to use spatial econometrics?

- **1. Introduction**
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Spatial lag model
 - $y = \rho W y + X \beta + \mu$ (3)
 - $\rho \neq 0, \gamma = 0, \lambda = 0$
 - Spatial dependence in dependent variables

• <u>Spatial cross-regressive model</u> • $y = X\beta + \gamma WX + \mu$ (5)

- Spatial error model
 - $y = X\beta + \epsilon$, with $\epsilon = \lambda W\epsilon + \mu$ (6)
2. Spatial regressions (continued)

- **1.** Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Three issues are on the table
 - **1.** When should you use these models?
 - 2. Which of the models should you choose?
 - 3. Can we combine these different spatial models?

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Test for spatial effects
 - H₀: No spatial dependence

1. When should you use these models?

- Estimate standard OLS, $y = X\beta + \epsilon$
 - Calculate Moran's *I* using $\hat{\epsilon}$

•
$$I = \frac{R}{S_0} \times \frac{\hat{\epsilon}' W \hat{\epsilon}}{\hat{\epsilon}' \hat{\epsilon}}$$

- Moran's *I* does have a rather uninformative alternative hypothesis
 - H_A: Spatial dependence...

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

1. When should you use these models?

- <u>Lagrange multiplier tests</u> provide more information
 - LM_{ρ} test for presence of spatial lag
 - LM_{λ} test for presence of spatial error

1. Introduction

- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- **1.** When should you use these models?
- Test for spatial lag
 - 1. Run OLS
 - **2. Run** LM_{ρ} -test

$$\begin{split} \mathbf{H_0:} \ \rho &= 0 \\ \mathbf{H_A:} \ \rho &\neq 0 \end{split}$$

$$LM_{\lambda} = \frac{1}{nJ} \left(\frac{\epsilon'Wy}{s^2}\right)^2 \sim \chi_1^2$$
(9)
with $J = [(WX\beta)'M(WX\beta) + Ts^2]/ns^2$ and
 $M = I - X(X'X)^{-1}X'$

1. Introduction

2. Spatial regressions

3. Mostly pointless?

4. Summary

- **1.** When should you use these models?
- Test for spatial error
 - 1. Run OLS
 - **2. Run** LM_{λ} -test

 $H_0: \lambda = 0 \\ H_A: \lambda \neq 0$

$$LM_{\lambda} = \frac{1}{T} \left(\frac{\epsilon' W \epsilon}{s^2}\right)^2 \sim \chi_1^2$$
(8)
with $\mathbf{T} = \operatorname{tr}((\mathbf{W}' + \mathbf{W})W)$ and $s = \epsilon' \epsilon / n$

- **1. Introduction**
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- 1. When should you use these models?
- However,
 - Spatial errors and lags may be correlated
 - May also be both present
- Use <u>robust LM tests</u>
 - *LM^{*}_p* adds correction factor for potential spatial error
 - LM_{λ}^* adds correction factor for potential spatial lag
 - Complex formulae!

- **1. Introduction**
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- 2. Which of the models should you choose?
- Estimate robust LM tests using software

- Common practice
 - Choose and estimate the model for which the statistic is the most significant

- **1. Introduction**
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- 2. Which of the models should you choose?
- Estimate robust LM tests using software

- Common practice
 - Choose and estimate the model for which the statistic is the most significant

- When LM_{λ}^* and LM_{ρ}^* are statistically insignificant we may use OLS
- Robust *LM*-tests are typically provided in STATA output

- **1. Introduction**
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

3. Can we combine these spatial models?

 In practice, both a spatial lag and spatial error may be present

- How to estimate?
 - Use Kelejian and Prucha's GS2SLS method
 - Three-stage procedure!

- **1. Introduction**
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

3. Can we combine these spatial models?

Complicated stuff!

- Let software do the difficult calculations!
 - SPAUTOREG in STATA
 - SPIVREG **in STATA**

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Gibbons and Overman (2012)
 - "Mostly pointless spatial econometrics?"
 - Nice read!
- We are interested to identify causal impacts β:
 y = Xβ + μ
- Typical features of spatial data
 - Unobserved variables correlated with X
 - Omitted variable bias!
 - Large datasets

- **1. Introduction**
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

 Tempting to 'fix' omitted variable bias by including a spatial lag

- Let's consider again: $y = \rho W y + X \beta + \mu$
- Reduced-form: $y = \rho W(\rho W y + X\beta + \mu) + X\beta + \mu$ $y = \rho W(\rho W (\rho W y + X\beta + \mu) + X\beta + \mu) + X\beta + \mu$... $y = X\beta + WX\pi_1 + W^2X\pi_2 + W^3X\pi_3 + [...] + \tilde{\mu}$

... The last equation suggests that in the end y is just a non-linear function of the X-variables

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Reduced form of spatial lag ≈ spatial crossregressive model
 - It is hard to prove that spatial lag is 'right' model
 - So, <u>it is hard to distinguish empirically</u> <u>between the two types of models</u>
 - Only when there is a structural (network) model, a spatial lag may be appropriate

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- <u>The spatial lag model *does not* solve the problem</u> <u>of omitted variable bias</u>!
 - Think of real exogenous sources of variation in X to identify β
 - Use instruments or quasi-experiments
 - More discussion on identification strategies in last week!

- Estimate spatial error model?
 - Spatial datasets are typically large
 - Efficiency issues are *usually* not so important

1. Introduction

- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Why then use spatial econometrics?
 - 1. <u>Exploratory tool</u> to investigate spatial autocorrelation
 - 2. Test for <u>spatial dependence</u> and heterogeneity, also in quasi-experiments and when using instruments
 - 3. Investigate <u>whether results are robust</u> to spatial autocorrelation (using different *W*)
 - 4. <u>Spatial cross-regressive models are often</u> <u>useful</u> and straightforward to interpret

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. <u>Summary</u>

Today:

- Spatial regressions
 - Spatial lag model
 - Spatial cross-regressive model
 - Spatial error model
- Use robust LM tests to distinguish between different types
 - Or: combine using advanced methods

4. Summary

 Spatial econometrics are a useful tool, but not a way to identify causal effects

- **1. Introduction**
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. <u>Summary</u>

Next week:

 Discrete choice methods and the random utility framework

Revealed vs. stated preference data

Spatial econometrics (3)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

