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“Everything is related to everything else, but near things are more related than

distant things.” Tobler (1970)

1. INTRODUCTION

The quote above is also known as the first law of geography and points to the empirical fact

that socio-economic phenomena, such as poverty, GDP and unemployment, often display

spatially correlated patterns — or, in other words, are clustered in space. For example,

people in Amsterdam who live at the three largest canals (Herengracht, Keizersgracht and

Prinsengracht) are usually richer than people who live in the western part of Amsterdam.

And most countries in sub-sahara Africa perform economically worse than most countries

in Western Europa. Such examples of spatially related phenomena occur at different spatial

levels and between different spatial agents (such as regions, firms, and people).

Of course, most spatial patterns, such as the spatial distribution of wealth, are the result

of historical processes, but if you think about it, the concept of a ‘spatial relationship’ is

actually rather common in everyday life. For example, most would-be students choose an
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university close to home, most workers search locally for a new job in the labour market, and

you usually catch a new disease (like the flu) nearby at work or school (spatial contagion).

Thus, (cor)relations over space are rather common. Still, mainstream economics does not

regard space as something that truly matters. This perception led to the criticism of one of

the founders of regional science, Walter Isard, that there was an “Anglo-Saxon bias” which

repudiates the factor of space and compresses everything within the economy to a point,

so that all spatial resistance disappears. Maintaining this confines economic theory to “a

wonderland of no spatial dimensions” (quoting here Isard, 1949, rather loosely).

In the last three decades, however, there seems to be a renewed interest in the concept of

space and methods to account for space properly—not in the least because of the increas-

ing availability of large spatial databases derived from remote sensing, satellite data and

mobile devices Another reason is the ‘death of distance’ debate (see the work of Cairncross,

1997; Friedman, 2005), where it was argued that due to the emergence of information and

communication technology the role of distance in trade, labor and housing markets would

diminished severely. Maybe surprisingly, we have actually seen the opposite in the last

three decades; clustering of most economic activity has only become stronger. The role of

distance indeed seems to have been reinforced—and we do not really understand at the

fundamental level why, although we have many theories (see as well the very readable and

comprehensive overview of Proost and Thisse, 2019).

Partly, the renewed scientific theoretical interest in space may be traced back to the

introduction of the monopolistic competition model by Dixit and Stiglitz (1977) and the

resulting emergence of the ‘new economic geography’ by Paul Krugman (see, e.g. , Fujita

et al., 1999). The renewed empirical interest in spatial methods in econometrics started

more or less with the seminal contribution of Anselin (1988) and was followed by many

others (see, e.g. , Baltagi et al., 2003; Kelejian and Prucha, 1998; Kelejian and Prucha, 2004).1

Most interest nowadays is (i) on the focus of combining time-series data with spatial data

(see, e.g. Elhorst, 2001; Baltagi et al., 2003), as a more complex form of panel data methods,

and (ii) on estimating larger spatial systems — the big data phenomenon (see for a good

introduction to the problem LeSage and Pace, 2009).

The econometric toolbox that deals with spatial patterns and processes is now commonly

referred to as ‘spatial econometrics’, a term coined by the Belgian professor Jean Paelinck in

the 1970s. Although most concepts seem at first quite similar to time-series econometrics,

there are some fundamental differences. In Section 2 we first explain the most fundamental

differences between spatial and time-series econometrics. We continue with discussing

the definition of spatial dependence and look into measuring this in Section 3. Section 4

incorporates spatial dependence in a regression framework. We provide some statistics to

test for the spatial dependence and the validity of the various spatial models given before.

In Section 5 we discuss when spatial econometric methods should be applied. Section 6

summarises. Throughout this syllabus we present empirical examples, where we apply

the various techniques to (i) measuring spatial autocorrelation in deprivation in Dutch

1Actually, before 1988 there were already quite some good volumes and articles on spatial statistics, including

the seminal work of Cliff and Ord (1981) who introduced the concept of spatial autocorrelation. However,

they were only used in geography or in a small research niche in the field of regional science.
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Figure 2.1: Obesity prevalence across the United States

neighbourhoods, (ii) spatial dependence in crime in Ohio, and (iii) the effects of a high-

speed rail connection on so-called intermediate places.

2. THE CHARACTERISTICS OF SPACE

2.1. WHAT IS THE PROBLEM?

Figure 2.1 gives the percentage of the adult population that is obese across the United States.

When observing Figure 2.1 one may infer two observations:

1. The obesity prevalence in the United States is unequal across states, ranging from

19.1% to 33.8%. This phenomenon is called spatial heterogeneity; socio-economic

variables are unequally distributed over space.

2. The obesity prevalence seems to be clustered across space, being the least in New-

England and the west coast and the most in the southern states. This phenomenon is

called spatial dependence (we will give a formal definition below).

Spatial heterogeneity and spatial dependence are very much related and difficult to discern

from each other. For that we need specifically tailored statistical tests.
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Most mainstream economics models do not take spatial heterogeneity or spatial depen-

dence into account and are therefore called ‘topologically invariant’ — that is, the phe-

nomenon that is studied exhibit constant characteristics over space. There is one exception

to this, and that is the nowadays common practice to incorporate spatial fixed effects for

countries, regions and zipcodes. Note that this will tackle spatial heterogeneity as far as the

levels are concerned (only the constants will then vary over space), but does not deal with

spatial dependence.

2.2. MODELLING SPATIAL RELATIONS

So, we know there are spatial effects, whether it is spatial dependence or spatial hetero-

geneity, but then what? How can we incorporate a spatial system into an econometric or

statistical framework?

Let us start with a country with four regions, named A, B , C , and D. Then all possible

relations between those four regions can be depicted as in diagram (2.1).

AOO

��

oo //BOO

��
C oo //��

??

D
��

__ (2.1)

If we compare diagram (2.1) with a time-series of four observations, such as in the following

diagram:

Yt−3
//Yt−2

//Yt−1
//Yt (2.2)

then it becomes clear that there are three main differences between the spatial and the

temporal case, namely:

1. Within a spatial system there is no clear origin. Where does one need to start to track

the relations?

2. Spatial relations are multi-directional. One spatial unit, say a region, can affect several

other spatial units directly.

3. Spatial relations are reciprocal. Spatial unit A affects B and B affects A at the same

time.

Of course, one might argue that there is always a temporal dimension (just as there is always

a spatial dimension), but for reasons of simplicitly we refrain from that possibility and

assume that a spatial relation occurs instantaneously (again, for space-time models see, e.g,

Elhorst, 2001).

But how to measure such a spatial relationship? Consider the map of GDP growth across

the world in Figure 2.2 (the data are obtained from the Mankiw et al., 1992). Each country
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Figure 2.2: GDP growth across countries

can be connected to another with some kind of function. The two most used functions in

the literature are:

1. Contiguity based. For so-called first-order contiguity based relations, two areas have

a relation if and only if they share a common border. Otherwise the relation is zero.

In this respect, relations between direct adjacent neighbours are called first order

contiguity, between areas that share a common neighbour second order contiguity,

and so on. If regions or countries are isolated (e.g. , with islands) this might pose a

problem.

2. Distance based. Here the relation between two areas is measured by some notion of

distance of travel time. A commonly used metric is the inverse of the distance between

the two areas, such as 1/d . Sometimes a more general power function is used, such as

d−α, to capture a non-linear relationship. If one feels that a relationship only extends

over a certain distance, say x kilometres, then one can also use a cut-off function,

indicating that the relationship is proportional to 1/d within x kilometres, and 0 after

x kilometres.

We would like to stipulate here that, alhough often used, distance does not have to be

based on a Euclid distance metric. It is just as valid to base your distance measure on, e.g. ,

social or information networks. Note, however, that geographically based distances, such as

kilometres, can truly be regarded as exogenous, while metrics based on social interactions

are usually correlated with the phenomenon to be explained. The latter introduces then

another kind of endogeneity, which further complicates matters when applying this in a

regression framework.

So, we have some kind of function that describes how units, such as areas, regions, coun-

tries and humans, relate to each other in space, but how can we depict such a relationship

for the whole spatial system? Consider again a country with four regions, named A, B , C ,
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and D , where the relationships between the regions are as depicted in diagram (2.3)

A

��

//B

��

oo

C //

??OO

Doo

(2.3)

Now, the way to go forward is to use the information from diagram (2.3) and display this in

a so-called spatial weight matrix, usually denoted as W.2 A spatial weight matrix captures

spatial relations through importance weights. If we use a first-order contiguity spatial weight

matrix, then (where rows denote always the origin and the columns the destination; so, the

1 in the first row and the second column denotes from A to B):

W =











0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0











. (2.4)

and if we use an inverse distance spatial weight matrix, where di j denotes some kind of

distance measure between spatial unit i and j (i , j ∈ {A,B ,C ,D}):

W =











0 1/dAB 1/dAC 1/dAD

1/dB A 0 1/dBC 1/dBD

1/dC A 1/dC B 0 1/dC D

1/dD A 1/dDB 1/dDC 0











. (2.5)

Three things become immediately clear when looking at the two types of spatial weight

matrices. First, they are symmetric, reflecting the reciprocal nature of spatial relationships.

Asymmetric spatial weight matrices are sometimes used as well, but make things consid-

erably more complex. Secondly, the diagonal is always zero. Thus, a spatial unit does not

affect itself directly. Thirdly, first order-contiguity spatial weight matrices exhibit quite a lot

of zeros when spatial systems become larger, and are therefore also called sparse matrices.

This feature is attractive because is has some direct computational advantages (basically, it

is a lot faster to store such matrices in computer memory; see, e.g. , LeSage and Pace, 2009).

Distance based weight matrices are usually full weight matrices (each entry except those on

the diagonal is non-zero).

For ease of computation and estimation spatial weight matrices are typically

row-standardized. This mean that all entries are divided by their respective row-sums.

2Because of notational ease, spatial econometrics usually is done in matrix notation. For those not accus-

tomed to matrix notation and algebra, Appendix A gives a quick introduction.
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So, for a typical four by four matrix this yields:

W =













0 a12
∑

j a1 j

a13
∑

j a1 j

a14
∑

j a1 j
a21

∑

j a2 j
0

a23
∑

j a2 j

a24
∑

j a2 j
a31

∑

j a3 j

a32
∑

j a3 j
0

a34
∑

j a3 j
a41

∑

j a4 j

a42
∑

j a4 j

a43
∑

j a4 j
0













. (2.6)

Note that with this procedure all entries on a role sum up to 1 and that spatial weight

matrices that initially were symmetrical loose their symmetry.

To give an example, consider again the countries in Figure 2.2. The darker the country code

areas the higher economic growth. But how to implement this in a statistical framework?

We proceed as follows. In this case, we measured the distance between each country as the

crow flies, giving us the distance di j between each country i and j . Using these distances,

we construct a distance based spatial weight matrix, W, where the entry for each row i and

column j is formed by 1/di j . Note that there about 97 countries in this dataset, thus we

end up with a matrix W with size 97×97, or 9,409 entries in total. Now, we know for each

country the growth of GDP per worker well, denoted with the vector y , then a measure for

GDP weighted by distance can be denoted as Wy , which is a vector, where the i -th element

gives a spatially weighted average of GDP, where we weight by distance.

2.3. SPATIAL AGGREGATION: FROM DOTS TO BOXES

A typical characteristic of spatial data is that these are aggregated to neighbourhoods, zip-

codes, cities, regions or even countries. Hence, micro-data on for which exact geographic

coordinates are unknown (say properties or job locations), so ‘dots’, are aggregated into

arbitrary ‘boxes’. This may lead to issues because the resulting aggregated areas usually

have a different shape and size. The resulting values (e.g. totals, proportions, densities) are

influenced by both the shape and scale of the aggregation unit. The bias associated with the

arbitrary aggregation is referred to as the Modifiable Areal Unit Problem (MAUP).

Briant et al. (2010) investigate this bias using data for France. They estimate a set of

standard regressions in the economic geography context (i.e. the analysis of spatial concen-

tration, agglomeration economies, and determinants of trade). They repeatedly estimate

regressions for different French zones (e.g. Régions, Employment Areas, and large and

small squares). They show that the MAUP is not so much of an issue if both the dependent

variable and independent variables are aggregated in the same way. If this is not the case,

they conclude that the size of the areas matter, but shape does so much less.

In sum, the MAUP could pose issues if different variables are measured at very different

levels of spatial aggregation, but it seems of secondary importance compared to issues of

endogeneity and causality.
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3. SPATIAL DEPENDENCE

3.1. WHAT IS SPATIAL DEPENDENCE?

The basic concept in spatial econometrics is spatial autocorrelation or spatial dependence.

Fundamentally, these two concepts are not the same, but usually they are treated similarly,

just as we do in this chapter. To proceed, first note that independence between two stochastic

variables can be formalized as follows:

Pr(Xi = xi ) = Pr(Xi = xi |X j = x j ), (3.1)

where i and j are two spatial units. Equality (3.1) basically states that the probability that

xi occurs in spatial unit i is not related with the probability that x j occurs in spatial unit

j . But what if spatial units i and j are related to each other, then equality (3.1) becomes

an inequality. If we now assume that there is a set of J neighbours around i that exert an

influence on i – via, e.g. , a first order contiguity matrix –, then the whole system of spatial

dependence may be denoted as:

J |
{

Pr (Xi = xi ) 6= Pr(Xi = xi |X j = x j )
}

. (3.2)

So, what does equation (3.2) actually say? Loosely speaking, it says that the spatial system of

dependence around i consists of all neighbours j ∈ J that have a statistical relation with i .

In order words, i and j are not independent.

This shows that spatial dependence is basically a statistical concept, which does not say

anything about causality, but merely about (cor)relations. Thus, phenomena occurring in

spatial units i and j may be correlated because there is a fundamental process working or

because some important variables have been left out of the model that influence both the

phenomenon in spatial unit i as well as in spatial unit j . The latter we denote with the term

unobserved spatial heterogeneity.

3.2. TESTING FOR SPATIAL DEPENDENCE

The oldest and most common general test for spatial dependence is the so-called Moran’s I :

I =
R

S0
×

x̃ ′Wx̃

x̃ ′x̃
, (3.3)

where R is the number of spatial units, S0 is the sum of all elements of the spatial weight

matrix, W is the spatial weight matrix, and x̃ = x − x̄ is a standardised variable of interest

(e.g. house prices, crime, pollution), where the mean is subtracted. Note that when the

spatial weight matrix is row-standardized all rows will sum up to 1 and S0 to R , thus the term

R/S0 becomes equal to 1. For those familiar with time-series, notice the close resemblance
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with the Durbin-Watson statistic.3 Statistical inference can be based on the standardised or

z-value of Moran’s I , as follows:

zI =
I −E(I )
p
Var(I )

,

Unfortunately, the expectation and the variance have rather long technical expressions, but

can be derived analytically based on the assumption of a normal distribution (Anselin, 1988).

Fortunately, computer programs will do this now (one can resort as well to simulations).

Further, note that E(I ) =−1/(N −1), where N is the number of observations. This implies

that when N is large enough, Moran’s I will be ranging from −1 to 1, with −1 indicating a

perfect negative spatial autocorrelation, 0 no spatial autocorrelation and 1 perfect positive

spatial autocorrelation.

Like Moran’s I , other general test statistics have been developed, such as Geary’s c and

Getis & Ord’s G . However, the latter two tests do now seem to perform as well as Moran’s I ,

and in most applications nowadays only Moran’s I is reported.

3.3. LOCAL MORAN’S I AND MORAN SCATTERPLOTS

Although Moran’s i above seem to perform fairly well in detecting spatial dependence, it

is not particularly suitable in detecting outliers or localised clusters of spatial dependence

(hotspots). Therefore, so-called local indicators of spatial association (LISA) have been

developed in the 1990s. They are basically a graphical tool to detect spatial dependence and

help in identifying the correct spatial pattern. Here, we will only discuss the local Moran’s I

statistic and the Moran scatterplot, which are the ones most commonly used.

For a standardized weight matrix, the local Moran’s I for spatial unit r is given by:

Ir =
(xr − x̄)

∑R
r=1 wr r ′(xr ′ − x̄)

∑R
r=1(xr − x̄)2/R

, (3.4)

where R is again the total number of spatial units and the x̄ denote the average of x, and x

may stand for every vector of variable of interest, including the residuals. Calculating the

test-statistic (3.4) for every spatial unit, gives a vector of indicators for spatial dependence.

In this way, outliers can be quite easily identified. Note that
∑

r Ir gives again our global

Moran’s I .

Looking more closely to (3.4) reveals another pattern. Namely, it is not difficult to see that

we can transform xr to zr by:

zr =
xr − x̄

√

∑R
r=1(xr − x̄)2/R

=
xr −E(x)
p
Var (x)

,

3This test statistic, d , measures whether temporal residuals are autocorrelated by

d =
∑T

t=2(xt −xt−1)2

∑T
t=1 e2

t

,

where a value of d that differs significantly from 2 suggests temporal autocorrelation.
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which is the standardized version of x. Now, (3.4) can also be rewritten as Ir = zr
∑R

r=1 wr r ′zr ′ .

In other words, depicting z against Wz in a scatterplot, is another way of presenting the

information behind (3.4). Moreover, the slope of the regression through the scatterplot

gives then the global Moran’s I again! The reasoning behind this is that the Moran’s I can

be interpreted as the correlation between a phenomenon z and the occurrence of that

phenomenon in neighbouring regions.

Because z is standardized, this slope of the regression runs always through the ori-

gin (remember: standardization means correction for the expectation, resulting in de-

viations around zero) and divides the scatterplot in four quadrants: namely positive-positive,

positive-negative, negative-negative, and negative-position (for those of you who want a

visual example, Figure 4.2 in Application 1 gives such a scatterplot. If there is positive spatial

dependence then most observations will lie in the positive-positive and negative-negative

quadrants. This basically means that values of z are closely correlated with values of z in

neighbouring regions. Negative spatial dependence will cause most observations to be

located in the negative-positive and the positive-negative quadrant.

Application 1 — Clustering of social deprivation in the Netherlands. Segregation

within cities is widely considered to be an issue. Let’s investigate whether clustering

of deprivation is an issue in the Netherlands. Brouwer and Willems (2007) calculate

so-called deprivation scores based on 18 indicators. The indicators are organised in four

categories: social deprivation (income levels, education and unemployment), physi-

cal deprivation (quality of housing stock), social problems (vandalism and crime) and

physical problems (noise and air pollution, satisfaction with living environment). They

use data from 1998, 2002 and 2006 to calculate so-called deprivation z-scores for each

neighbourhood in the Netherlands with at least a thousand inhabitants (there are about

4 thousand neighbourhoods in the Netherlands), where each of the four categories is

weighted equally and standardised with mean zero and unit standard deviation. Because

the overall z-score is the sum of the standardised scores of four categories, the average

score is 0, but the standard deviation of the overall z-score exceeds 1.

We report maps of the z-scores in Figure 3.1 for the four largest cities in the Nether-

lands, where darker colours indicate more deprived neighbourhoods. It can be seen that

deprivation seems to be clustered in the western part of Amsterdam, in the southern

part of Utrecht and south-western part of the Hague. However, whether this clustering

is a general phenomenon that pertains to the whole of the Netherlands, we calculate

Moran’s I .

Figure 3.2 reports Moran’s I scatterplots. In the left figure we construct a spatial weight

matrix based on the inverse of distance between neighbourhoods. We find a strong and

statistical significantly different from zero Moran’s I of 0.513. Hence, there is strong

and significant association between deprivation scores in a neighbourhood and nearby

neighbourhoods. The same holds true if we look at the right figure, where we assume

a stronger decay because we take the inverse of distance squared as the importance

weights. Moran’s I is now even somewhat stronger, suggesting that although deprivation

is clustered across space, clusters are rather localised (e.g. within parts of the city).
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(a) Amsterdam (b) Rotterdam

(c) The Hague (d) Utrecht

Figure 3.1: Deprivation z-scores

Of course, we do not know what are the causes and consequences of the clustering of

deprivation. For that, we must consider a regression framework.

4. SPATIAL REGRESSION MODELS

4.1. A BASIC TAXONOMY OF SPATIAL ECONOMETRIC MODELS

In a regression framework we may denote now the following general spatial model, using

the concept of the spatial weight matrix as explained above and in matrix form:

y = ρW1 y +W2Zγ+Xβ+ε,

ε = λW3ε+µ, (4.1)
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(a) Weight function: wr r ′ = 1/dr r ′ (b) Weight function: wr r ′ = 1)d 2
r r ′

Figure 3.2: Local Moran’s I scatterplots

where y is a vector of endogenous variables, X is a matrix of exogenous variables, {ρ, γ,

β, λ} is a vector of parameters, and µ is a vector of i.i.d. distributed residuals (usually

assumed to be normally distributed). Note that the spatial weight matrices do not have to

be the same. W1, W2 and W3 may differ, but are usually equal to each other. To facilitate

estimation and testing in a regression framework, these weight matrices are almost always

row-standardized. So again, this means that every element in these matrices are divided by

the sum of all elements in their specific rows (wi j /
∑

i wi j ). Spatial processes work through

these spatial weight matrices and are measured by their corresponding parameters, ρ, γ

and λ. So, spatial dependence is captured in only a few parameters to be estimated, which

is rather efficient. Attempts have been made to estimate the whole spatial weight matrix

parametrically, but this does not seem to improve matters much.

Note that both Z and X are both two sets of exogenous variables, which may be identical

to each other (but not necessarily so). Moreover, if ρ = γ=λ= 0 model (4.1) simplifies to a

standard multivariate regression model:

y = Xβ+µ, (4.2)

Model (4.1) gives the general expression of the most simple form of modelling space in

a regression framework. This model can be decomposed in the following three separate

spatial models.

The spatial lag model (ρ 6= 0, γ= 0, λ= 0) This leads – in matrix notation – to the fol-

lowing expression:

y = ρW1 y +Xβ+µ. (4.3)

Note that for each region r and all its possible neighbours r ′ yields: yr = ρ
∑

r ′ wr r ′ yr +
βxr +µr , which, for example, collapses with only two regions (r and r ′) and weights

wr r ′ set at 1 and 0 (for a contiguity matrix), to: yr = ρyr ′ +βxr +µr , which bears again

close resemblance to the time-series model with autocorrelation.

We can rewrite the spatial lag model (4.3) as: (I−ρW1)y = Xβ+µ, where I stands for
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the identity matrix. Rewriting leaves us with: y = (I−ρW1)−1(Xβ+µ).4 Thus a change

in y causes a changes throughout the whole system, because some kind of feedback

system is introduced. To see this, consider the following mathematical equality:

(I−ρW1)−1 = I+ρW1 +ρ2W1W1 +ρ3W1W1W1 + . . . (4.4)

which bears close resemble with the mathematical formulation of conventional input-

output models. Namely, when y changes this has an effect on itself (through the

identity matrix), if affects its neighbours (through the second term), those neighbours

affect their neighbours again (through the third term), and so forth. The nice thing

about this model is that it has an interesting theoretical interpretation. For example, it

can, at least theoretically, model the transfer of knowledge, the spread of disease, or

agglomeration effects.

The spatial cross-regressive model (ρ = 0, γ 6= 0, λ= 0) This leads to the following ex-

pression:

y = γW2Z+Xβ+µ. (4.5)

Note that now for a region r and say its neighbour r ′ yields: yr = zr ′γ+xrβ+µr when

the spatial weight connection between r and r ′ is set again at 1. Thus, some kind of

phenomenon, say regional growth, in r depends on some exogenous variables, say

the growth of human capital, in region r and in its neighbouring region r ′.

This model is econometrically the least interesting of the three. Essentially it is a

transformation on (a subset of) the exogenous variables (Z), and therefore reduces to

a basic regression framework. If you think a variable needs a spatial transformation,

then that transformation can be performed on that variable without transforming the

other variables or changing the model specification.

The spatial (autoregressive) error model (ρ = 0, γ= 0, λ 6= 0) This leads to the follow-

ing expression:

y = Xβ+ε,

ε = λW3ε+µ, (4.6)

where for one region r and it neighbour r ′ the expression for the residual of r becomes:

εr =λεr ′ +µr , with the weight between r and r ′ set at 1. This shows that the residual

is basically a random effect (µr ) in combination with a part of the residual in its

neighbouring region.

Now note that ε−λW3ε = µ, solving for ε leads to (I−λW3)ε = µ and thus ε = (I−
λW3)−1µ, which basically reduces the spatial error model to y = Xβ+ (I−λW3)−1µ.

This last expression clearly shows that in theory spatial dependence only shows up in

the obtained regression residuals through the same effect as in equation (4.4). The

4The trick here is to multiply both sides with (I−ρW1)−1 and to remember that (I−ρW1)−1(I−ρW1) = I.
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spatial error model is theoretically therefore more difficult to interpret than the spatial

lag model.

Basically, the three models above are the ones most commonly used, but other models

including combinations of the above three and combinations with time-series exist as well,

but for reasons of simplicity we will restrain ourselves to these ones.

4.2. TESTING FOR SPATIAL EFFECTS

A question that naturally arises is whether it actually matters when spatial dependence is

present. Before starting to estimate all kinds of specifications, the econometrician would

like to have some clue about which model specification would be more or less the correct

one. Fortunately, several test-statistics have been devised to test for the presence and

type of spatial dependence. In general there are two type of tests. Unfocused or general

misspecification tests, which test for the presence of spatial dependence in what ever form

present. We also consider focused or specific misspecification tests that test for the presence

of a specific type of spatial dependence (i.e. , spatial lag or spatial error dependence). In

this section we will only give a few of these tests, without going into the mathematical

background of these tests. The null-hypothesis is always no spatial dependence. In other

words, the null model is the ordinary regression model.

y = Xβ+µ (4.7)

We always assume that the econometrician has estimated the null model and kept the

realisations of the error term, the residuals, which we call u.

The first, unfocused, test that can be applied is to Moran’s I on the residuals of the OLS

regression (4.7):

I =
R

S0
×

u′Wu

u′u
, (4.8)

The advantage of this test-statistic is that is has power against all kinds of spatial dependence

processes. The disadvantage is that we do not know against which kind of spatial process.

To know what model should be estimated, there are also focused test that directly test

for the presence of a spatial lag or spatial error model. There are no tests for spatial cross-

regressive models, mainly because they do not affect the residuals, u, and are not considered

as a misspecification, but as omitted variable bias. These focused tests are so-called Lagrange

Multiplier (LM) tests and are given here to complete the picture. Unfortunately, these tests

are somewhat complex but because every preprogrammed estimation procedure gives these

as output and many papers report them, they may be needed to get a good overview. We

start with the simplest, the LMλ-test for the presence of a spatial error component model,

which is basically a scaled Moran’s I test (see also Florax and Nijkamp, 2005).

LMλ =
1

T
×

(

u′Wu

s2

)2

(4.9)
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where s2 is the maximum-likelihood variance u′u/R and where T is somewhat more compli-

cated. It is the trace of a quadatric expression of the weight matrix: T = tr(W′W+WW). The

trace is here a new matrix operation. It is essentially the sum of all the diagonal elements of

a matrix (tr(W) =
∑R

i=1 wi i ). Fortunately, this test statistics follows nicely a χ2 distribution

with one degree of freedom.

The LMρ has the same distribution and looks similar:

LMρ =
1

R J
×

(

u′Wy

s2

)2

(4.10)

where J has a rather ugly expression, namely: J = [(WXβ̂)′M(WXβ̂)+Ts2]/Rs2. Here β̂ are

the estimated OLS coefficients and M is the projection matrix I−X(X′X)−1X′. There is a lot

more to say about tests for spatial dependence and there are quite some more, but these are

the most common and the ones you’ll find reported in almost every table of results.

These tests have as disadvantage that they do not distinguish properly between spatial

error and spatial lag processes. Therefore, so-called robust LM tests have been constructed.

These tests are called robust because they account for the potential presence of a spatial lag

of spatial error model when testing for a spatial error or spatial lag model, respectively. The

test for a spatial error robust to the presence of a spatial lag model is as follows:

LM∗
λ =

1

T −T 2(R J )−1
×

(

u′Wu

s2
−T (R J )−1 u′Wy

s2

)2

, (4.11)

with all notation as above. This expression looks (and is) ugly, but if you look closer, you see

that the spatial lag is somehow subtracted (i.e. equation (4.9) - equation (4.10) that accounts

for the local misspecification of a spatial lag process.

Alternatively, the test for spatial lag robust to the presence of a spatial error model is:

LM∗
ρ =

1

R J −T
×

(

u′Wy

s2
−

u′Wu

s2

)2

. (4.12)

Both tests follow nicely a χ2 distribution with one degree of freedom.

The common practice is to choose and estimate that model for which the robust test-

statistic is statistically significant. This is valid if only one test statistic is statistically signifi-

cant. If none of these test-statistics are significant, there is no misspecification in our basic

regression model (4.7) and we may confidently apply OLS.

However, if both robust test statistics are significant, one can apply the generalised spatial

2SLS estimator (GS2SLS) of Kelejian and Prucha (1998) and Kelejian and Prucha (2004),

which allow for the inclusion of a spatial error and a spatial lag term.

Application 2 — Spatially correlated crime in Ohio. We have seen above that OLS is

not correct anymore when spatial dependence is present.5 So, for the spatial lag model,

conventional regression techniques are not appropriate anymore and we have to turn to

more complex methods, like maximum likelihood or the GS2SLS estimator. Fortunately,
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as we have seen statistical softare packages are readily available now for the estimation

of spatial dependence. For our application we use Luc Anselin’s Geoda6, which is very

useful for making nice spatial maps as well. Moreover, we use the user-written plug-in

for Stata, the so-called ‘sg162’ package, which is able to deal with spatial datasets, spatial

tests and statistics and the estimation of spatial dependence in regression frameworks.

A long-lasting and still somewhat unsettled scientific literature concerns the determi-

nants of crime. Already since the 19th century sociologists discovered that crime rates

were correlated with poverty rates. We will look into this issue using the often used

Columbus, Ohio, crime dataset. First look at Figure 4.1. Here, the darker the colour,

the larger the crime rate, with high crime rates downtown and smaller crime rates up-

town. We are interested in the fact whether crime rates are correlated with poverty and

whether there is spatial dependence present in these data. In other words, do crime

rates exhibit some kind of spatial pattern and may this even be generated by a particular

spatial process (e.g. , by contagion). We construct a first-order contiguous spatial weight

matrix, indicating for 49 neighbourhoods whether they share a border. Further, the

variable ‘crime’ which measures the residential burglaries and vehicle theft per thousand

households in a neighbourhood, the variable ‘income’ which is the average income in

thousand dollars and the variable ‘hoval’ which is the average house value in thousand

dollars. All data pertain to 1980.

Is there spatial dependence present in this dataset? We therefore first look at the

relation between ‘crime’ and the level of ‘crime’ in the neighbours. To to so, we stan-

dardize the ‘crime’ variable and depict this against the spatial lag of ‘crime’ (W× ‘crime’)

in a Moran scatterplot. This scatterplot is depicted in Figure 4.2. More specifically, we

run our test-statistics by invoking the STATA command ‘spatdiag’. Obviously, there is a

positive relation between those two variables. Crime is high when crime levels in the

neighbourhoods are high and low when crime levels in the neighbourhoods are low. And

of course, the steeper the regression slope, the more spatial dependence and the higher

the global Moran’s I .

Table 4.1 displays the test-statistics after running an OLS regression where crime is

the dependent variable and the independent variables are housing values and income.

First, the Moran’s I clearly shows that some kind of spatial dependence is present in

the residuals. If we now look at the Lagrange multiplier test, then we see that both tests

for spatial error and lag models are significant. However, we do not know which model

to choose. Therefore, we look at the Robust LM tests, which clearly indicates that the

spatial lag model (even when corrected for the presence of an error model) is to preferred

above the spatial error model. Note that the Robust LM test is now only marginally

significant, which suggests that running spatial regressions in this context is probably

not very important.
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Figure 4.1: Crime rates, in quartiles, in the neighbourhoods of Columbus, Ohio.

Figure 4.2: Moran scatterplot of ‘crime’ in Columbus, Ohio.
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Table 4.1: Test statistics for spatial dependence

test statistic p-value

Moran’s I 2.955 0.003

Spatial error:

Lagrange multiplier 5.723 0.017

Robust Lagrange multiplier 0.079 0.778

Spatial lag:

Lagrange multiplier 9.364 0.002

Robust Lagrange multiplier 3.720 0.054

4.3. ESTIMATION OF SPATIAL MODELS

Can we still apply OLS on those regression models? We answer this question in the light

of the three models above. For this purpose, we need the concepts of statistical bias and

efficiency. Recall that statistical bias refers to the fact that an estimator of a parameter

(θ̂) does not produce the correct true parameter (E(θ̂) 6= θ). And an efficient estimator θ̂

indicates that there is no estimator θ̂1 that has a variance smaller than the variance of θ̂.

For instance, not accounting for heteroskedasticity by not applying robust standard errors

usually lead to inefficient standard errors (but not to a biased estimator).

The spatial lag model (y = ρW1 y +Xβ+µ) When this is the true model, OLS is not only

inefficient, but it always produces biased results.7 The reason for this may be clear.

There are endogenous variables on the right-hand side, which leads to E[µ|X ] 6= 0 or

biased results when simply applying OLS. Actually, this spatial bias can be proven

rather easily. Without loss of generality we may simplify the model to:

y = ρW1 y +µ. (4.13)

Now remember that the OLS estimate for ρ is:

ρ̂ = [(W1 y)′(W1 y)]−1(W1 y)′y. (4.14)

with ′ denoting the transpose of a matrix.8

Now substitute the expression for y from equation (4.13) into equation (4.14) and we

7Recall that bias indicates that the expected value of the difference between and estimator and the parameter

that is is estimating is non-zero. Or, if µ̂Y is an estimator of µY then the size of the bias is E(µ̂Y )−µY and

we say that the estimator is biased (Stock and Watson, 2015).
8Here W1 y is used instead of the normal matrix X. Inserting X for W1 y leaves us again with the familiar result:

(X′X)−1X′y .
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finally get:

ρ̂ = [(W1 y)′(W1 y)]−1(W1 y)′(ρW1 y +µ) (4.15)

= [(W1 y)′(W1 y)]−1[(W1 y)′(W1 y)]ρ+ [(W1 y)′(W1 y)]−1(W1 y)′µ) (4.16)

= ρ+ [(W1 y)′(W1 y)]−1(W1 y)′µ. (4.17)

The second term in (4.17) is usually not equal to zero (because µ is correlated with

y) and therefore OLS does not produce a consistent estimator of ρ (remember that

consistency means loosely that if the number of observations become very large, the

estimator convergences in probability to the parameter that is estimating). Including

the β coefficients in this proof is straightforward.

The spatial cross-regressive model (y = γW2Z+Xβ+µ) Because the exogenous pa-

rameters are only (spatially) transformed, this model can still be consistently and

efficiently estimated by OLS.

The spatial (autoregressive) error model (y =Xβ+ (I−λW3)−1µ) As seen above, this

model produces a spatial dependence structure in the residuals, indicating that the

residuals are not identically and independently distributed anymore. Fortunately,

this does not lead to biased results, but it does create inefficiency, leading to too high

standard errors. Thus, there are better estimation procedures than OLS out there that

produce consistent and efficient results. Note that OLS here gives inefficient results

with sample sizes smaller than infinitely (and how often does that happen). This

means that when correcting for autoregressive errors the standard errors might turn

out to be rather different than the standard errors coefficients resulting from an OLS

regression (and with small samples this might affect the β coefficients as well).

Thus, for the spatial lag (and to a lesser extent for the spatial error) OLS is not feasible

anymore. Which alternatives are there? The two mostly used estimation strategies are:

1. A maximum likelihood approach. This basically implies that the researcher should as-

sume a stochastic distribution for the error term (typically normal) and then searches

for that parameter combination that fits the data best. Besides complex and com-

putationally intensive, the biggest drawback is that one has to assume a stochastic

distribution (see for some technical details Anselin and Hudak, 1992).

2. A spatial instrumental variable approach. Usually the instruments are formed by

spatially transforming the exogenous variables (thus using WX). The main benefit of

this approach is that it is computationally much faster than the maximum likelihood

approach (and it does not requires restrictive distributional assumptions). However,

the exogeneity of the instruments is often doubtful and should therefore be very

carefully adopted. In a seminal series of articles Kelejian and Prucha (1998) and

Kelejian and Prucha (2004) have expanded this technique with a generalized method

of moment estimator and have shown that the estimator is unbiased and efficient

under a reasonably set of mild assumptions. Moreover, their generalised spatial two
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stage least squares (GS2SLS) estimator is able to simultaneously estimate a model in

the presence of both a spatial lag and a spatial error.

Fortunately, computer applications and packages for most statistical software is now widely

available. The most often used are listed below:

GeoDa Open source application written by Luc Anselin Anselin (2000). Although somewhat

limited in terms of models it can estimate, this application has a nice integration

with GIS techniques (it can create maps) and is able to deal with larger (> 20,000

geographical observation points) datasets. Figure 4.1, for example, is created with

GeoDa.

Stata There are some user-written packages in Stata that allow for the creation of spatial

weights matrices and the estimation of spatial econometric models. The estimations

in in the applications in this syllabus have been produced by Stata. Moreover, Ingmar

Prucha provides codes on his website9.

MatLab Kelly Pace (Pace, 1997; Pace and Barry, 1997; Pace et al., 1998) maintains a well-

organised webpage for spatial statistic routines in Matlab ,just as Ingmar Prucha does

on his website.10

R R is now the environment that offer the most in terms of software for spatial econometric

analysis (just as it provides a nice integration with GIS routines). R’s CRAN task

view: Analysis of Spatial Data maintained by Roger Bivand (Bivand, 2002) gives a very

thorough overview of all possibilities.11 It is open source, so free.

ArcGis ArcGis is obviously mostly used to handle and display spatial data, but can as well,

to a certain extent, perform some spatial econometric exercises uses the spatial analyst

toolbox12. Be careful though for the burden on your wallet and on your computer

memory.

5. WHEN SHOULD SPATIAL ECONOMETRIC MODELS BE USED?

The question remains when spatial econometric methods should be applied. As an ex-

ploratory tool, spatial econometrics is extremely useful. Hence, to calculate Moran’s I to

see whether your data exhibits spatial dependence is something that can and should be

done. Make sure to investigate whether Moran’s I is robust to the choice of the spatial weight

matrix, W. For example, construct a spatial weight matrix using contiguity weights, weights

based on the inverse distance matrix, as well as the inverse of distance squared, and see

whether Moran’s I change with different spatial weight matrices.

9See http://econweb.umd.edu/~prucha/Research_Prog.htm.
10See http://www.spatial-statistics.com/software_index.htm.
11See https://cran.r-project.org/web/views/Spatial.html.
12http://www.esri.com/software/arcgis/extensions/spatialanalyst.
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The application of spatial regressions is somewhat more problematic. We think spatial

cross-regressive models are often insightful and relatively straightforward to estimate, as

these models can be estimated by OLS. Investigating the spatial spillovers from, say, a policy

in neighbouring areas may sometimes even of primary interest. Still, bear in mind that the

finding of effects of neighbouring areas (γ 6= 0) depends on the specification of the weight

matrix, W. So, once again, we think it is important to test extensively for robustness of the

results with respect to the specification of W.

In most spatial applications, the issue of unobserved spatial characteristics that may

be correlated to the variable of interest is of key concern. For example, say that one is

interested in the effect of crime on house prices. Crime, however, is potentially correlated

to many housing and neighbourhood characteristics that may be hard, or even impossible,

to capture. Neighbourhoods with higher crime levels may have lower building quality, a

different demographic composition, or a lower level of public goods. Hence, when measuring

the effects of crime on house prices, there is likely an omitted variable bias.

It may be tempting to apply a spatial lag model to ‘fix’ this omitted variable problem. For

example, one might think that a spatial lag of house prices captures all kind of unobservable

factors related to the neighbourhood that are correlated to crime. However, Gibbons and

Overman (2012) show that the spatial lag model in a way is a somewhat more involved

version of the spatial cross-regressive model. Let us consider the spatial lag model:

y = ρWy +Xβ+µ. (5.1)

We then can replace y by ρWy +Xβ+µ and apply this substitution repeatedly to obtain:

y = ρW
(

ρWy +Xβ+µ
)

+Xβ+µ,

= ρW
(

ρW
(

ρWy +Xβ+µ
)

+Xβ+µ
)

+Xβ+µ,

= ρW

(

ρW
(

ρW
(

ρWy +Xβ+µ
)

+Xβ+µ
)

+Xβ+µ

)

+Xβ+µ,

...

= Xβ+WXρ+W2Xρ2 +W3Xρ3 + ...+ µ̃.

(5.2)

The final equation is the so-called ‘reduced-form’ of the spatial lag model. As you may

observe, there is no y appearing on the right-hand side of the reduced-form specification.

Hence, estimating spatial lag models that theoretically allow for ‘spillovers’, or estimating

spatial cross-regressive models, lead to similar specifications in the sense that the only dif-

ferences arise from how many spatial lags of X are included (Gibbons and Overman, 2012).13.

This implies that spatial lag models do not ‘magically’ fix omitted variables problems as at

the end of the day the dependent variable (y) is a function of observed covariates (X). Still, as

a robustness check for the main parameter of interest (β), spatial lag models can be useful,

although one should realise that calculating a marginal effect is cumbersome.14 In practice

13Recall that a spatial cross-regressive model assumes that ρ2 ≈ ρ3 ≈ ... = 0
14Please consider to estimate the marginal effect of equation (5.2), which is hard.
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it is often impossible to distinguish between a spatial lag and spatial cross-regressive models

because we do not have prior knowledge on the data generating process – meaning that

we do not know whether higher-order lags of X are indeed realistic. However, structural

models of networks or spatial interactions may help here, as they tell the researchers how

agents relate to each other.15 In such a context, spatial lag models may be useful in testing

for spillovers.

Gibbons and Overman (2012) also wonder whether the spatial error model is still useful

in a time of big data. Recall that OLS estimation of a spatial error model yields consistent

estimates, but they are inefficient, meaning that the standard errors in an OLS regressions

with autocorrelated residuals will yield too high standard errors. However, given the in-

creasing availability of large datasets in spatial economics, efficiency issues become less

of a concern. In other words, when standard errors are already small, getting even smaller

standard errors will not change much the conclusions. For smaller datasets, say with less

than 10,000 observations, a spatial error model may still be worth estimating.

Application 3 — The impact of high-speed rail on intermediate places. There seems

to be a general agreement that the supply of transportation infrastructure has a positive

effect on the development of the so-connected regions.

Local policy officials often lobby to be connected to new and faster infrastructure. For

example, places like Breda (the Netherlands), Noorderkempen (Belgium), Montabaur

(Germany) were not large enough to attract a dedicated high-speed railline, but all have

a stop on a high-speed railline because it simply passes by.

However, Koster et al. (2022) argue that, contrary to general belief, connecting an

intermediate place to the new infrastructure need not be beneficial. There is an interplay

among several forces. First, the transportation of intermediates goods and services

strengthens the need of being close to large markets to reduce transport costs. On the

other hand, the immobility of some workers across space makes it attractive for firms to

locate close to local markets. Moreover, when firms start to concentrate, competition

becomes tougher, thus implying that firms want to locate apart in order to restore profits.

Hence, whether intermediate areas benefit from being connected may depend on the

local context, as this will determine what of the above forces dominate.

Koster et al. (2022) study the effects of being connected to the High-speed rail network

of Japan, the so-called Shinkansen. They use data on employment density in 1957 and

2014 and compare ‘intermediate’ municipalities that have received a Shinkansen station

with intermediate places that did not have received a station. They exclude central

municipalities, such as Osaka and Nagoya, because those municipalities were likely the

reason to construct the Shinkansen in the first place. Hence, by comparing intermediate

places to each other, rather than say, some rural place to Tokyo, they are more likely to

capture a causal effect of the opening of a Shinkansen station. We display the thought

15One can think here about models describing epidemics, congestion and social interaction effects in networks.

Especially the latter now receives more and more attention in main stream economics and econometrics,

but note that the causality here still needs attention (König et al., 2017).
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experiment in Figure 5.1. They then estimate the following specification:

∆ loge =α+βs +Xγ+µ, (5.3)

where ∆ logei denotes a the change in the log of employment density in each munici-

pality 2014 and 1957, s is a dummy indicating whether a Shinkansen station has been

opened, X are control variables, such as region dummies and the log of population

density in 1957. α, β and γ are coefficients to be estimated and µ is the residual.

However, one may argue that a Shinkansen station may also have effects on neigh-

bouring municipalities. Furthermore, one may be concerned that residuals are spatially

correlated. As is common practice, they construct a row-standardized inverse distance

weight matrix. Hence:

∆ loge =α+β0s +β1Ws +γxi +ε, (5.4)

where ε=λWε+µ.

Table 5.1 reports the results. We first report the baseline OLS specification without

spatial effects in column (1). The coefficient regarding the Shinkansen station dummy is

−0.2796 and statistically significant at the 5% level. Hence, this means that employment

density changes by (exp(−0.2796)−1) ·100% =−24% (on the interpretation of dummy

variables in log-linear regressions, please see the syllabus on Identification in Week 3).

Hence, there is a sizeable reduction in employment density in municipalities that receive

a station.

Column (2) includes the spatial lag of a Shinkansen station. A nearby station has a

strong and statistically significant (at the 1% level) negative impact on employment

density. Hence, when a station is opened in a nearby municipality, employment density

in the own municipality is reduced. The coefficient seems very large, but it appears

realistic. For a standard deviation increase in the spatial lag of the Shinkansen station,

employment changes by (exp(0.0063436×−11.1404)−1) ·100% =−6.8%. This effect is

somewhat smaller than the direct effect of having a Shinkansen station, which makes

intuitive sense. Fortunately, the direct effect is hardly affected by the inclusion of the

spatial lag of having a Shinkansen station. So omitted variable bias due to not including

a spatial cross-regressive term does not seems to be a major issue.

In column (3) we apply a generalised two-stage least squares estimator (GS2SLS) to

estimate a spatial error model (see Drukker et al., 2013). The results show that the spatial

error is strong and positive. Somewhat surprisingly, the estimate of λ exceeds 1, which is

somewhat unrealistic as it would suggest an unrealistically strong spatial autocorrelation

between residuals. This signifies that there are likely many unobservable factors that are

spatially correlated. What is more important is that the impact of a Shinkansen station

is now only slightly lower (β̂ = −0.2034) and statistically significant at the 10% level.

However, given the confidence bands, the coefficient is not statistically significantly

different from the baseline specification.

For completeness, column (4) includes a spatial lag of the dependent variable. We are

not great proponents of models with a spatially lagged dependent variables because this
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Figure 5.1: Comparing intermediate places

type of model can be interpreted as a reduced-form spatial cross-regressive model, while

the marginal effects of a Shinkansen station are hard to interpret (Gibbons and Overman,

2012). However, we still think that the spatial lag model might be useful in showing the

robustness of our results. It is reassuring that the coefficient of interest hardly changes,

although the impact of the spatial lagged dependent variable is strong and statistically

significant. One may be concerned that the spatial lag of the dependent variable is larger

than 1, which would be unrealistic. However, the standard error implies that the spatial

lag is not statistically significantly larger than 1.

Because all spatial effects are statistically significant, it is hard to choose between the

spatial error and spatial lag model. Column (5) in Table 5.1 therefore includes all spatial

effects at the same time, showing that the main effect is very similar to the preferred

specification in column (1), albeit somewhat lower. We again find a small positive

effect related to the spatial lag of the dependent variable, while the spatial error and

spatial lag of the Shinkansen station dummy, capturing the opening of a Shinkansen

station in nearby municipalities, are statistically insignificant. As Gibbons and Overman

(2012) argued, this can be explained by collinearity between the spatial lag of changes

in employment and the spatial lag of the Shinkansen station dummy, which are hard ti

distinguish empirically.

In sum, we think that the results with and without spatial effects confirm a negative

direct effect of receiving a Shinkansen station of about 20%, which we think is substantial.

Hence, the connection to a new transportation infrastructure need not foster the creation

of jobs in intermediate and remote regions.

6. SUMMARY

Spatial dependence is omnipresent in almost all datasets that have a spatial dimension.

Spatial dependence is likely present in some form in data on e.g. house prices, wages,

unemployment, pollution, traffic congestion, etc. To deal with issues of spatial dependence,

we have introduced a separate set of econometric methods. These methods differ from

SPATIAL ECONOMETRICS 24



SUMMARY

Table 5.1: The opening of a Shinkansen station

(Dependent variable: the log of the change in the employment density between 1957 and 2014)

(1) (2) (3) (4) (5)

OLS OLS GS2SLS GS2SLS GS2SLS

Baseline Spatial cross- Spatial Spatial All spatial

OLS regressive model error model lag model effects

Shinkansen station in 2014 -0.2796** -0.2814** -0.2034* -0.2167* -0.2182*

(0.1218) (0.1198) (0.1233) (0.1246) (0.1239)

Highway in 2014 -0.0938 -0.0860 -0.1034 -0.0815 -0.0852

(0.1008) (0.1007) (0.0984) (0.0965) (0.0968)

Population density in 1957 (log) 0.0733** 0.0728** 0.0332 0.0272 0.0275

(0.0301) (0.0297) (0.0312) (0.0307) (0.0310)

Precipitation density (km2) -0.0004*** -0.0004*** -0.0004*** -0.0004*** -0.0004***

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

Spatial effects:

W· Shinkansen station in 2014 -11.1404*** -2.6923

(2.8048) (3.1049)

W ·ε 2.0174*** 0.3840

(0.3265) (0.5581)

W · log∆e 1.2501*** 1.2290***

(0.1878) (0.2483)

Region fixed effects (8) Yes Yes Yes Yes Yes

Number of observations 1,412 1,412 1,412 1,412 1,412

R2 0.206 0.211

Pseudo-R2 0.202 0.225 0.226

Notes: W is a row-standardized inverse distance-weight matrix. We exclude municipalities that are centres of

metropolitan or micropolitan areas. Robust standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

standard time-series analysis because the spatial dimension of data differs from the temporal

dimension, as spatial relations are multi-directional and reciprocal.

A key issue is to model spatial relations, which is done using the spatial weight matrix.

The spatial weight matrix captures spatial relations through importance weights. Examples

of spatial weight matrices are first-order contiguity matrices or inverse-distance weight

matrices.

Given the spatial weight matrix, one can calculate Moran’s I , which is a correlation coeffi-

cient ranging from (approximately) −1 to 1. A negative correlation indicates that a variable

is negatively spatially autocorrelated. For example, this would indicate that if crime in

one neighbourhood is higher, neighbourhoods in the vicinity are observed to have a lower
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crime rate. By contrast, with a positive Moran’s I , crime in one neighbourhood is positively

associated with crime in nearby neighbourhoods.

A statistically significant Moran’s I does not tell anything about causality so one may

turn to spatial regressions. We have distinguished between three different types of spatial

regressions: (i) a spatial cross-regressive model (with a spatial lag of the X-variable(s)), (ii) a

spatial lag model (with a spatial lag od the dependent variable, y), and (iii) a spatial error

model (with a spatial lag of the residual). Spatial cross-regressive models are useful in many

instances and can be straightforwardly estimated by OLS. For spatial lag models or spatial

error models, maximum likelihood or generalised two-stage-least-squares should be used.

We would like to make a caveat here. The presence of spatial dependence does not

necessarily mean that there is some sort of convoluted spatial process – such as spillover

processes between firms or network externalities – at work (see for a similar critique Gibbons

and Overman, 2012). Usually, it indicates that the researcher has omitted an important

spatially correlated variable or that the important spatially correlated variable can not be

easily observed, like ambition and intelligence. Unobserved spatial heterogeneity is more

the rule than the exception. The problem is though that if you are interested in finding a

causal effect, spatial econometrics is not of much help as it does not aid identification of the

underlying causal mechanism. Moreover, the marginal effects from a spatial econometric

regression are difficult to assess. Therefore, and that is what Gibbons and Overman (2012)

argue, the best way to incorporate spatial variables is via spatially correlated exogenous

variables (i.e. the spatial cross-regressive model). These are the easiest to interpret and do

not require any additional assumptions. Still note that this not mean that you have found a

causal effect.16

That does not render spatial econometrics meaningless. On the contrary, spatial econo-

metrics are a very useful diagnostic tool to assess whether spatial dependence is an issue.

Further, controlling for spatial dependence might have some impact on the size of the

coefficient of interest and removes at least one particular source of bias in the data, even

though a direct interpretation may be cumbersome. Spatial econometrics may also be useful

in the context of (structural) model describing explicitly spatial or network relationships.

The tools introduced here may then empirical validate such a model.
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A. MATRIX ALGEBRA

Matrix algebra is slightly different than normal algebra (with just numbers), especially in

terms of multiplication and division. At first, it might seem very outlandish if you are not

used to it. Therefore, this small appendix is provided which gives the most important

characteristics of matrices and rules of matrix algebra.

A.1. WHAT IS A MATRIX?

A matrix X can be seen as a rectangular box filled with numbers xi j , where x denotes a

number and i and j are indices that run from 1 to I or J , respectively. Specifically, i stands

for the i -th row of X and j for the j -th column (thus xr ow,column). So, in general we have

X =





















x11 x12 · · · x1 j · · · x1J

x21 x22 · · · x2 j · · · x2J
...

...
. . .

...
. . .

...

xi 1 xi 2 · · · xi j · · · xi J
...

...
. . .

...
. . .

...

xI 1 xI 2 · · · xI j · · · xI J





















. (A.1)

A.2. IDENTITY MATRIX

And identity, I, matrix is a matrix with zeros on the off-diagional and ones on the diagonal,

so:
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I =





















1 0 · · · 0 · · · 0

0 1 · · · 0 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · 1 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · 0 · · · 1





















. (A.2)

multiplying a matrix or a vector with the identity matrix always gives back the same matrix

of vector, so: Iy = y .

A.3. MATRIX ADDITION AND SUBTRACTION

Matrix addition and subtraction is fortunately rather easy. For matrix addition:

X+Y = Z, (A.3)

where each zi j in matrix Z is calculated by xi j + yi j . Likewise for subtraction. So Matrix

addition and subtraction is element wise, but only goes for matrices of the same size.

A.4. MATRIX MULTIPLICATION

For matrix multiplication we now use the so-called inner products of vectors (usually de-

noted by a ′). Say, x = [x1 x2 x3] and y = [y1 y2 y3], then x′y = x1 y1 + x2 y2 + x3 y3.

Assume that we have the following matrix multiplication

XY = Z, (A.4)

then the number on the i -th row and j -th column of Z is calculated by the inner product of

the i -th row of X and the j -th column of Y. For example:

XY =
[

1 3

4 4

][

2 4

1 6

]

=
[

1×2+3×1 1×4+3×6

4×2+4×1 4×4+4×6

]

=
[

5 22

12 40

]

= Z (A.5)

A.5. MATRIX DIVISION

Matrix division is the tough, both in concept and calculation (therefore, let a computer do all

the work). Obviously, 1/X is a strange concept. Therefore, the inverse, X−1, is invented and

defined as follows (only for symmetrical matrices with equal number of rows and columns):

X−1X = XX−1 = I (A.6)

So multiplying a matrix with its inverse, and vice versa, gives the identity matrix.
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