# Spatial econometrics (1)

**Applied Econometrics for Spatial Economics** 

## **Hans Koster**

Professor of Urban Economics and Real Estate







- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Hans Koster -> URBAN ECONOMICS .NL
  - Professor of Urban Economics and Real Estate
  - h.koster@vu.nl
  - Lectures
  - Programme director of STREEM (streem.sbe@vu.nl)

#### Materials

- All course materials, lecture slides, etc. can be accessed via <u>www.urbaneconomics.nl/aese</u>
- If there is anything unclear, let me know!



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- This course
  - Learn about advanced tools and techniques important for spatial economics
    - → No theory an applied course!

Do not hesitate to ask questions during the class!

- Notation on slides
  - Most important concept are <u>underlined</u>
  - Questions (via Menti), exercises and applications
    - → On red slides



# Test question: Who won the nobel prize in Economics in 2021? (multiple answers may be correct)







#### 1. Introduction

- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

## The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2021



III. Niklas Elmehed © Nobel Prize Outreach.

**David Card** 

"for his empirical contributions to labour economics"



III. Niklas Elmehed © Nobel Prize Outreach.

Joshua D. Angrist



III. Niklas Elmehed © Nobel Prize Outreach.

Guido W. Imbens

"for their methodological contributions to the analysis of causal relationships."



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Today:
  - 1. Spatial econometrics
  - 2. Discrete choice
  - 3. Identification
- Tomorrow:
  - 4. Hedonic pricing
  - 5. Quantitative spatial economics



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

## Today:

- 1. Spatial econometrics
  - Spatial data, autocorrelation, spatial regressions
- 2. Discrete choice
  - Random utility framework, estimating binary and multinomial regression models
- 3. Identification
  - Research design, IV, OLS, RDD, Quasi-experiments

#### Tomorrow:

- 4. Hedonic pricing
  - Theory and estimation
- 5. Quantitative spatial economics
  - General equilibrium models in spatial economics



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary





- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary







- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary





- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- What is special about spatial data?
- Not only time component, but also spatial component:

$$y_{t,i} = \beta x_{t,i} + \epsilon_{t,i} \tag{1'}$$



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

#### Some remarks on matrix notation

Use bold symbols for vectors

$$\boldsymbol{x} = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \end{bmatrix}$$

Use bold symbols and capitals for matrices

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$$

Identity matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\rightarrow IX = X$$

• Inverse  $X^{-1}$  is matrix equivalent of 1/x $\rightarrow X^{-1}X = XX^{-1} = I$ 





- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Many economic processes are spatially correlated
  - Tobler's first law of geography
- Most economics models are "topologically invariant"
- New economic fields have emerged
  - Urban economics
  - New economic geography (NEG)
- Synergy with other fields
  - **Economic geography**
  - Regional science
  - GIS



### 2. Space in economics

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

## **Economists and space**















- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Spatial econometrics
- 40-50s mainly domain of statisticians
- Cliff and Ord (1973): "Spatial autocorrelation"
- Paelinck and Klaassen (1979): "Spatial Econometrics"
- Rapid growth since Anselin (1988)
- New estimators, tests and interpretation
  - e.g. Kelejian and Prucha (1998, 1999, 2004, 2007, 2010)



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Spatial modelling is becoming increasingly important
  - New and geo-referenced data
  - Advanced software
  - New methods and regression techniques!

2. Space in economics



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Time is simple
  - Natural origin
  - No reciprocity
  - Unidirectional

$$x_{t-3} \rightarrow x_{t-2} \rightarrow x_{t-1} \rightarrow x_t$$

- Linear space (e.g. beach) is different
  - No natural origin
  - Reciprocity
  - Unidirectional



$$x_1 \leftrightarrow x_2 \leftrightarrow x_3 \leftrightarrow x_4$$

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- <u>Two-dimensional space</u> becomes even more complex
  - No natural origin
  - Reciprocity
  - Multidirectional



• i = 1,2,3 can refer to point data, areas, grids



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

 First, we have to define the spatial structure of the data

Specified through a <u>spatial weights matrix</u>

- Spatial weights matrix W:
  - Consists of  $n \times n$  elements
  - Discrete or continuous elements

- How to define weights?
  - Euclidian distance
  - Network distance
  - Spatial interactions
  - Social networks



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

How to define spatial matrices?

- Contiguity matrix
  - Adjacent → 1<sup>st</sup> order contiguous
  - Neighbours of neighbours → 2<sup>nd</sup> order contiguous

- Distance matrix
  - k-nearest neighbours
  - Inverse distance weights (1/distance)
  - Cut-off distance



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

## Let's provide an example of a <u>contiguity matrix</u>



to

|      | W     | $n_1$ | $n_2$ | $n_3$ | $n_4$ |
|------|-------|-------|-------|-------|-------|
| from | $n_1$ | 0     | 1     | 1     | 0     |
|      | $n_2$ | 1     | 0     | 1     | 1     |
|      | $n_3$ | 1     | 1     | 0     | 0     |
|      | $n_4$ | 0     | 1     | 0     | 0     |



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Matrices can be standardised
  - Different principles can be used
  - Most common: row-standardisation:

$$w_{ij}^* = \frac{w_{ij}}{\sum_{k=1}^n w_{ik}}$$

where k are other locations

- Interpretation of
  - $\sum_{j=1}^{n} w_{ij}$ : sum of connections to neighbours
  - $w_{ij}^*$  denotes the share of connections to neighbours



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

## Create an inverse distance weight matrix with row-standardised weights



to

| from | W     | $n_1$ | $n_2$ | $n_3$ | $n_4$ |
|------|-------|-------|-------|-------|-------|
|      | $n_1$ |       |       |       |       |
|      | $n_2$ |       |       |       |       |
|      | $n_3$ |       |       |       |       |
|      | $n_4$ |       |       |       |       |



# Create an inverse distance weight matrix with row-standardised weights





- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

## Create an inverse distance weight matrix with row-standardised weights



to

|      | W     | $n_1$                         | $n_2$                         | $n_3$                         | $n_4$                         |
|------|-------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| trom | $n_1$ | 0                             | $\frac{1/5}{1/5 + 1/4 + 1/9}$ | $\frac{1/4}{1/5 + 1/4 + 1/9}$ | $\frac{1/9}{1/5 + 1/4 + 1/9}$ |
|      | $n_2$ | $\frac{1/5}{1/5 + 1/2 + 1/4}$ | 0                             | $\frac{1/2}{1/5 + 1/2 + 1/4}$ | $\frac{1/4}{1/5 + 1/2 + 1/4}$ |
|      | $n_3$ | $\frac{1/4}{1/4 + 1/2 + 1/6}$ | $\frac{1/2}{1/4 + 1/2 + 1/6}$ | 0                             | $\frac{1/6}{1/4 + 1/2 + 1/6}$ |
|      | $n_4$ | $\frac{1/9}{1/9 + 1/4 + 1/6}$ | $\frac{1/4}{1/9 + 1/4 + 1/6}$ | $\frac{1/6}{1/9 + 1/4 + 1/6}$ | 0                             |



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

## Create an *inverse* distance weight matrix with row-standardised weights



to

| from | W     | $n_1$ | $n_2$ | $n_3$ | $n_4$ |
|------|-------|-------|-------|-------|-------|
|      | $n_1$ | 0     | 0.36  | 0.45  | 0.20  |
|      | $n_2$ | 0.21  | 0     | 0.53  | 0.26  |
|      | $n_3$ | 0.27  | 0.55  | 0     | 0.18  |
|      | $n_4$ | 0.21  | 0.47  | 0.32  | 0     |



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Let's say you aim to create a spatial weight matrix

→ What could be a problem with the following weight matrix?

$$y = \beta e + We'\gamma + \epsilon$$
 (3)  
 $y = \text{income}; e = \text{education}$ 

Say that W depends on the number of friends you have



# What could be a problem with: $\mathbf{y}=\beta\mathbf{e}+\mathbf{W}\mathbf{e}'\gamma+\varepsilon$ , where $\mathbf{W}$ depends on the number of friends?





- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Remarks regarding <u>distance weight matrices</u>
  - Check for exogeneity of matrix
  - Connectivity
  - Symmetry
  - Standardisation
  - Distance decay



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

## Choice of distance decay is arbitrary

- Sometimes theory may help
- May also try to find the optimal decay parameter empirically





- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Choice of distance decay is arbitrary
  - An alternative is to forget about specifying W
  - Alternatively, use different x-variables capturing concentric rings
  - Average of x-variable for different distance bands



### 3. Spatial data structure

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Choice of distance decay is arbitrary

e.g. 
$$y = \alpha x_{0-100} + \beta x_{100-200} + \gamma x_{200-300} + \epsilon$$





- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- How to define spatial weight matrix using software
  - SPATWMAT in STATA, based on geographic coordinates
  - SPWEIGHT in STATA
  - Geoda
  - SPATIAL STATISTICS TOOLBOX in ArcGIS
  - SPDEP in R
- Concentric rings should be calculated manually



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Usually we do not have space-continuous data
  - 'Dots' to 'boxes'

- Data is aggregated at
  - Postcode areas
  - Municipalities
  - Regions
  - Countries

- Problems:
  - Aggregation is often arbitrary
  - Areas are not of the same size

- This may lead to distortions
  - Modifiable areal unit problem (MAUP)



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

### An illustration:



O: one unskilled, productivity = y

 $\bullet$ : one skilled, productivity = y > y

Briant, Combes and Lafourcade (2010, JUE)



Aggregation seems to be important!

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

# Briant et al. (2010) investigate whether choice matters for regression results





- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- MAUP is of secondary importance
  - If y and x are aggregated in the same way
  - Matters more for larger areas (e.g. regions)
  - Use meaningful areas if possible
- Specification issues are much more important



### Spatial econometrics (2)

**Applied Econometrics for Spatial Economics** 

#### **Hans Koster**

Professor of Urban Economics and Real Estate







- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Spatial autocorrelation between values
  - Implies  $cov(x_i, x_j) = E[x_i x_j] E[x_i] \cdot E[x_j] \neq 0$
  - Again, j refers to other locations

- Spatial autocorrelation, dependence, clustering
  - Fuzzy definitions in literature



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- How to measure spatial autocorrelation
  - Moran's I
  - Focus on one variable x (e.g. crime)

- H<sub>0</sub>: independence, spatial randomness
- H<sub>A</sub>: dependence
  - On the basis of adjacency, distance, hierarchy



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

#### Moran's I is given by:

$$I = \frac{R}{S_0} \times \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}} \tag{4}$$

where R is the number of spatial units  $S_0$  is the sum of all elements of the spatial weight matrix W is the spatial weight matrix  $\tilde{x} = x - \bar{x}$  is a vector with the variable of interest

- Use row-standardised spatial weight matrix W!
  - So that  $I_S = \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}}$



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- Recall that  $I_S = \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}}$  (standardised I)
  - Note similarity with OLS:  $\hat{\beta} = \frac{x'y}{x'x}$
  - Hence:  $W\widetilde{x} = \alpha + I\widetilde{x} + \epsilon$ , where  $\alpha = 0$
- Moran's I is correlation coefficient (more or less)
  - $\approx [-1,1]$
  - But: expectation  $E[I] = -\frac{1}{N-1}$
- Visualisation
  - Moran scatterplot



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- Sidenote:
  - Please realise that  $W\widetilde{x}$  is a vector

• 
$$I_S = \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}}$$

• W 
$$\times \widetilde{x} = W\widetilde{x}$$

$$\begin{bmatrix} 0 & w_{12} & w_{13} \\ w_{21} & 0 & w_{23} \\ w_{31} & w_{32} & 0 \end{bmatrix} \times \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \\ \tilde{x}_3 \end{bmatrix} = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix}$$

• Notation: 
$$\frac{x'y}{x'x} = x^T y (x^T x)^{-1}$$



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- How to investigate the statistical significance of (4)?

• 
$$\frac{I - E[I]}{\sqrt{\text{var}[I]}}$$
 (5)

- However,  $\sqrt{\text{var}[I]}$  is difficult to derive
- E[I] = -1/(n-1)
- Assume normal distribution of I to approximate  $\sqrt{\text{var}[I]}$  under  $H_0$
- Or: bootstrapping/simulation

See Cliff and Ord (1973) for more details



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- Also possible: correlation to other variables:

$$I_{S} = \frac{\widetilde{\mathbf{x}}' W \widetilde{\mathbf{z}}}{\widetilde{\mathbf{x}}' \widetilde{\mathbf{x}}}$$



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- How to calculate Moran's I using software
  - SPAUTOC in STATA
  - SPLAGVAR in STATA
  - SPATIAL STATISTICS TOOLBOX in ArcGIS

- Alternative: Getis and Ord's G
  - Most of the time only Moran's I is reported



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Let's try to answer the queston:
 "Is social deprivation spatially clustered?"

• How to determine the most deprived neighbourhoods?

- Dutch government calculated deprivation zscore for each neighbourhood
  - Based on housing quality, safety, perception and satisfaction
  - Important: the 83 most deprived neighbourhoods were selected for an investment of >€1 billion



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Determine <u>spatial autocorrelation</u>
  - 1. Determine distance between all neighbourhoods using centroids
  - 2. Use inverse distance function  $w_{ij} = 1/(d_{ij}^{\gamma})$  to determine spatial weights in weight matrix
  - 3. Calculate Moran's I:  $W\tilde{z} = \alpha + I\tilde{z} + \epsilon$  where  $\tilde{z} = z \bar{z}$  and W is a rowstandardised weight matrix
    - Recall that Wz is a vector
  - 4. Bootstrap this procedure to estimate standard error (or use software)



## What is your hypothesis when looking at the figure





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Calculate Moran's I
  - Using inverse distance function  $w_{ij} = \frac{1}{d_{ij}^{\gamma}}$

$$\mathbf{I} = \mathbf{0.513}^{***} (\gamma = 1)$$
8
6
4
2
1 2 3 4





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Spatial correlation in deprivation
  - Local phenomenon?
  - You do not know why scores are autocorrelated...
  - No causal relationships!



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- It is important to make a distinction between global and local spatial autocorrelation
  - See Anselin (2003) for a discussion

- Global spatial autocorrelation
  - Local shock affects the whole system

- Local spatial autocorrelation
  - Local shock only affects the 'neighbours'



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Example: Consider an income increase for grocery store owner
- Local autocorrelation:



Global autocorrelation:





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Example: Consider an income increase for grocery store owner
- Local autocorrelation:



Global autocorrelation:





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Let's define  $z = \lambda Wz + \mu$ 
  - Reduced-form of z is  $z = [I \lambda W]^{-1}\mu$
  - With  $\lambda < 1$
- A Leontief expansion yields:

• 
$$[I - \lambda W]^{-1} = I + \lambda W + \lambda^2 W^2 + \lambda^3 W^3 + \cdots$$

- $W^2 \rightarrow$  There is an impact of neighbours of neighbours (as defined in W) although it is smaller ( $\lambda^2$ )
  - Global autocorrelation
  - Spatial multiplier process
  - In practice: covariance may approach zero after a relatively small number of powers



## What happens when $\lambda>1$ in $\mathbf{z}=\lambda\mathbf{W}\mathbf{z}+\mu$ ?





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Let's define  $z = \lambda W \mu + \mu$ 
  - This is already a reduced-form of z
- No impact of behaviour beyond 'bands' of neighbours
  - Dependent on definition of W
  - ...Local autocorrelation
- Covariance is zero beyond these bands



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Local or global autocorrelation?
  - Dependent on application
  - Theory...



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

#### Taxonomy:

$$y = \rho W y + X \beta + W X \gamma + \epsilon$$
 (1) with

$$\epsilon = \lambda W \epsilon + \mu \tag{2}$$

W is a row-standardised weight matrix  $\rho$ ,  $\gamma$ ,  $\beta$ ,  $\lambda$  are parameters to be estimated



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

#### Spatial lag model

$$\bullet \quad y = \rho W y + X \beta + \mu \tag{3}$$

• 
$$\rho \neq 0, \gamma = 0, \lambda = 0$$

Spatial dependence in dependent variables

- Note similarity with time-series models
  - AR Model



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial lag model

$$\bullet \quad \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\mu} \tag{3}$$

- The outcome variable influences everyone (indirectly)
  - Global autocorrelation

We may write

$$(\mathbf{I} - \rho \mathbf{W})\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$\mathbf{y} = (\mathbf{I} - \rho \mathbf{W})^{-1}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\mu}) \text{ with}$$

$$(\mathbf{I} - \rho \mathbf{W})^{-1} = \mathbf{I} + \rho \mathbf{W} + \rho^2 \mathbf{W}^2 + \rho^3 \mathbf{W}^3 + \cdots$$



## Can the spatial lag model $\mathbf{y} = \rho \mathbf{W} \mathbf{y} + X \beta + \mu$ be estimated by OLS?





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial lag model

$$\bullet \quad \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\mu} \tag{3}$$

 We cannot estimate this by OLS because of reverse causality

Recall AR-model:

$$y_t = \rho y_{t-1} + X\beta + \mu_t \tag{4}$$

We can estimate this in principle by OLS because  $y_{t-1}$  is not influenced by  $y_t$ 



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Spatial lag model
- Estimate with OLS?
  - Let's simplify (3) to

$$y = \rho W y + \mu$$

(3')

• The estimator for  $\rho$  yields:

$$\hat{\rho}_{OLS} = \frac{(Wy)'y}{(Wy)'(Wy)}$$

 $\rightarrow$  Show that  $\hat{\rho}_{OLS}$  is biased when  $cov(y, \mu) \neq 0$ 



# Consider estimating $\mathbf{y}=\rho\mathbf{W}\mathbf{y}+\mu$ by OLS. Show that $ho_{\mathrm{OLS}}$ is biased when $\mathrm{cov}(\mathbf{y},\mu)\neq 0$ .





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

#### Spatial lag model

- Estimate with OLS?
  - Let's simplify (3) to

$$y = \rho W y + \mu$$

(3')

• The estimator for  $\rho$  yields:

$$\hat{\rho}_{OLS} = \frac{(Wy)'y}{(Wy)'(Wy)}$$

• If we plug-in (3') we get:

$$\hat{\rho}_{OLS} = \frac{(Wy)'(\rho Wy + \mu)}{(Wy)'(Wy)}$$

$$\hat{\rho}_{OLS} = \rho + \frac{(Wy)'\mu}{(Wy)'(Wy)}$$



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

#### Spatial lag model

- Use maximum likelihood (ML) estimator
  - Selects the set of values of the model parameters that maximizes the likelihood function
- Instrumental variables (IV)
  - Instruments for y may be WX and  $W^2X^2$
  - Less efficient than ML, but feasible for 'large' datasets
  - e.g. Kelejian and Prucha (1998)



# Assume you use Maximum Likelihood? Does $\beta$ represent a marginal effect in a spatial lag model $\mathbf{y} = \rho \mathbf{W} \mathbf{y} + X\beta + \mu$ .





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

#### Spatial cross-regressive model

• 
$$y = X\beta + \gamma WX + \mu$$

• 
$$\rho = 0, \gamma \neq 0, \lambda = 0$$

(5)



## Can the spatial cross-regressive model $\mathbf{y} = X\beta + \gamma \mathbf{W} \mathbf{X} + \mu$ be estimated by OLS?





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial cross-regressive model

• 
$$y = X\beta + \gamma WX + \mu$$
 (5)

- Include (transformations) of exogenous variables in the regression
  - OLS is fine!

Autocorrelation is local



#### 3. Spatial regressions

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

#### Spatial error model

• 
$$y = X\beta + \epsilon$$
, with  $\epsilon = \lambda W\epsilon + \mu$  (6)

• 
$$\rho = 0, \gamma = 0, \lambda \neq 0$$



### Can the spatial error model $\mathbf{y} = X\beta + \lambda \mathbf{W}\epsilon + \mu$ be estimated by OLS?





- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

#### Spatial error model

• 
$$y = X\beta + \epsilon$$
, with  $\epsilon = \lambda W\epsilon + \mu$  (6)

- Omitted spatially correlated variables
  - e.g. Ad-hoc defined boundaries
  - Uncorrelated to X!

- Consistent estimation of parameters  $\beta$
- But: inefficient
  - $\epsilon$  are not i.i.d.
  - Standard errors are higher in OLS
  - $\beta$  may be different in 'small' samples



### Spatial econometrics (3)

**Applied Econometrics for Spatial Economics** 

#### **Hans Koster**

Professor of Urban Economics and Real Estate







- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

#### Spatial lag model

$$\bullet \quad \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\mu} \tag{3}$$

• 
$$\rho \neq 0, \gamma = 0, \lambda = 0$$

Spatial dependence in dependent variables

#### Spatial cross-regressive model

$$\bullet \quad y = X\beta + \gamma WX + \mu \tag{5}$$

#### Spatial error model

• 
$$y = X\beta + \epsilon$$
, with  $\epsilon = \lambda W\epsilon + \mu$  (6)



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Three issues are on the table
  - 1. When should you use these models?
  - 2. Which of the models should you choose?
  - 3. Can we combine these different spatial models?



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

1. When should you use these models?

- Test for spatial effects
  - H<sub>0</sub>: No spatial dependence

- Estimate standard OLS,  $y = X\beta + \epsilon$ 
  - Calculate Moran's I using  $\hat{\epsilon}$

• 
$$I = \frac{R}{S_0} \times \frac{\hat{\epsilon}' W \hat{\epsilon}}{\hat{\epsilon}' \hat{\epsilon}}$$

- Moran's I does have a rather uninformative alternative hypothesis
  - H<sub>A</sub>: Spatial dependence...



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

#### 1. When should you use these models?

- However,
  - Spatial errors and lags may be correlated
  - May also be both present
- Use <u>robust LM tests</u>
  - $LM_{\rho}^{*}$  adds correction factor for potential spatial error
  - $LM_{\lambda}^{*}$  adds correction factor for potential spatial lag
  - Complex formulae!



## Why may we not discuss a test for the importance of spatial cross-regressive model?





- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

3. Can we combine these spatial models?

 In practice, both a spatial lag and spatial error may be present

- How to estimate?
  - Use Kelejian and Prucha's GS2SLS method
  - Three-stage procedure!



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

3. Can we combine these spatial models?

Complicated stuff!

- Let software do the difficult calculations!
  - SPAUTOREG in STATA
  - SPIVREG in STATA



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Gibbons and Overman (2012)
  - "Mostly pointless spatial econometrics?"

• We are interested to identify causal impacts  $\beta$ :

$$y = X\beta + \mu$$

- Typical features of spatial data
  - Unobserved variables correlated with X
  - Omitted variable bias!
  - Large datasets



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

 Tempting to 'fix' omitted variable bias by including a spatial lag

Let's consider again:

$$y = \rho W y + X \beta + \mu$$

Reduced-form:

$$y = \rho W(\rho Wy + X\beta + \mu) + X\beta + \mu$$

$$y = \rho W(\rho W(\rho Wy + X\beta + \mu) + X\beta + \mu) + X\beta + \mu$$
...
$$y = X\beta + WX\rho + W^2X\rho^2 + W^3X\rho^3 + [...] + \widetilde{\mu}$$

... The last equation suggests that in the end y is just a non-linear function of the X-variables



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Reduced-form of spatial lag model ≈ spatial crossregressive model
  - It is hard to prove that the spatial lag model is the 'right' model
  - So, it is hard to distinguish empirically between the two types of models
  - Only when there is a structural (network)
    model, a spatial lag may be appropriate



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- The spatial lag model does not solve the problem of omitted variable bias!
  - Think of real exogenous sources of variation in X to identify β
  - Use instruments or quasi-experiments
  - More discussion on identification strategies in last week!

- Estimate spatial error model?
  - Spatial datasets are typically large
  - Efficiency issues are usually not so important



## When would you use spatial econometric techniques (multiple answers can be correct)?





- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Why then use spatial econometrics?
  - 1. Exploratory tool to investigate spatial autocorrelation
  - 2. Test for <u>spatial dependence</u> and heterogeneity, also in quasi-experiments and when using instruments
  - 3. Investigate <u>whether results are robust</u> to spatial autocorrelation (using different W)
  - 4. <u>Spatial cross-regressive models are often</u> useful and straightforward to interpret



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

#### Koster, Tabuchi & Thisse (2022, JoEG)

- Modern economies invest a sizable amount of money into high-speed rail
- We study the impact of high-speed rail stations on 'intermediate' places
- Local policy makers lobby for the opening of a station, but is this a good idea?





- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

### Three potential effects on employment in intermediate places:

- + A better connection reduces the need for firms to locate near large markets with high demand for goods and services
- A better connection to local markets reduces the need to locate near local markets
- When firms start to concentrate in local markets, competition becomes tougher



#### 3. Mostly pointless spatial econometrics?

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary





- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

We estimate the following regression

$$\Delta \log e = \alpha + \beta s + X\gamma + \epsilon$$

where s captures a dummy whether a municipality has a station



# With $\Delta \log e = \alpha + \beta s + \mathbf{X}\gamma + \epsilon$ , what does $\beta$ capture?





- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

We estimate the following regression

$$\Delta \log e = \alpha + \beta s + X\gamma + \epsilon$$
  
where s captures a dummy whether a

municipality has a station

- Let us allow for spatial effects
  - e.g. because nearby stations have effects

We therefore extend the baseline equation

$$\Delta \log e = \alpha + \beta_0 s + \beta_1 W s + X \gamma + \epsilon$$

where  $\epsilon = \lambda W \epsilon + \mu$  and W is a row-

standardised inverse-distance weight matrix



# With $\Delta \log e = \alpha + \beta_0 s + \beta_1 \mathbf{W} s + \mathbf{X} \gamma + \epsilon$ , what does $\beta_1$ capture?





- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

#### Results

Table 5.1: The opening of a Shinkansen station

(Dependent variable: the log of the change in the employment density between 1957 and 2014)

|                                          | (1)<br>OLS<br>Baseline | (2) OLS Spatial cross- regressive model | (3)<br>GS2SLS<br>Spatial<br>error model | (4)<br>GS2SLS<br>Spatial | (5)<br>GS2SLS<br>All spatial<br>effects |
|------------------------------------------|------------------------|-----------------------------------------|-----------------------------------------|--------------------------|-----------------------------------------|
|                                          |                        |                                         |                                         |                          |                                         |
|                                          |                        |                                         |                                         |                          |                                         |
|                                          |                        |                                         |                                         |                          |                                         |
| Shinkansen station in 2014               | -0.2796**              | -0.2814**                               | -0.2034*                                | -0.2167*                 | -0.2182*                                |
|                                          | (0.1218)               | (0.1198)                                | (0.1233)                                | (0.1246)                 | (0.1239)                                |
| Spatial effects:                         |                        |                                         |                                         |                          |                                         |
| W- Shinkansen station in 2014            |                        | -11.1404***                             |                                         |                          | -2.6923                                 |
|                                          |                        | (2.8048)                                |                                         |                          | (3.1049)                                |
| $\mathbf{W} \cdot \boldsymbol{\epsilon}$ |                        |                                         | 2.0174***                               |                          | 0.3840                                  |
|                                          |                        |                                         | (0.3265)                                |                          | (0.5581)                                |
| W·log∆e                                  |                        |                                         |                                         | 1.2501***                | 1.2290***                               |
|                                          |                        |                                         |                                         | (0.1878)                 | (0.2483)                                |
| Region fixed effects (8)                 | Yes                    | Yes                                     | Yes                                     | Yes                      | Yes                                     |
| Number of observations                   | 1,412                  | 1,412                                   | 1,412                                   | 1,412                    | 1,412                                   |
| $R^2$                                    | 0.206                  | 0.211                                   |                                         |                          |                                         |
| Pseudo-R <sup>2</sup>                    |                        |                                         | 0.202                                   | 0.225                    | 0.226                                   |



*Notes*: **W** is a row-standardized inverse distance-weight matrix. We exclude municipalities that are centres of metropolitan or micropolitan areas. Robust standard errors are in parentheses. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.10.

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

#### Koster, Tabuchi & Thisse (2022, JoEG)

- The impact of a Shinkansen station reduces employment density by ≈20-25%
  - Hence, a Shinkansen station does not benefit intermediate places
- Spatial cross-regressive model
  - A standard deviation increase in Ws, employment density decreases by 6.8%
  - Ws = the spatially weighted number of Shinkansen stations in nearby municipalities
- Spatial error and lag effects are relevant unrealistically high spatial parameters
  - More importantly, the main effect is hardly influenced by the inclusion of spatial effects



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

#### **Spatial econometrics:**

- Spatial data:
  - No natural origin, reciprocity, multidirectional
  - Define spatial relationships by the spatial weight matrix

- Spatial regressions
  - Spatial lag model
  - Spatial cross-regressive model
  - Spatial error model
  - ... Combine using advanced methods





### Spatial econometrics (3)

**Applied Econometrics for Spatial Economics** 

#### **Hans Koster**

Professor of Urban Economics and Real Estate





