Spatial econometrics (1)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Hans Koster -> URBAN ECONOMICS .NL
 - Professor of Urban Economics and Real Estate
 - h.koster@vu.nl
 - Lectures
 - Programme director of STREEM (streem.sbe@vu.nl)

Materials

- All course materials, lecture slides, etc. can be accessed via <u>www.urbaneconomics.nl/aese</u>
- If there is anything unclear, let me know!

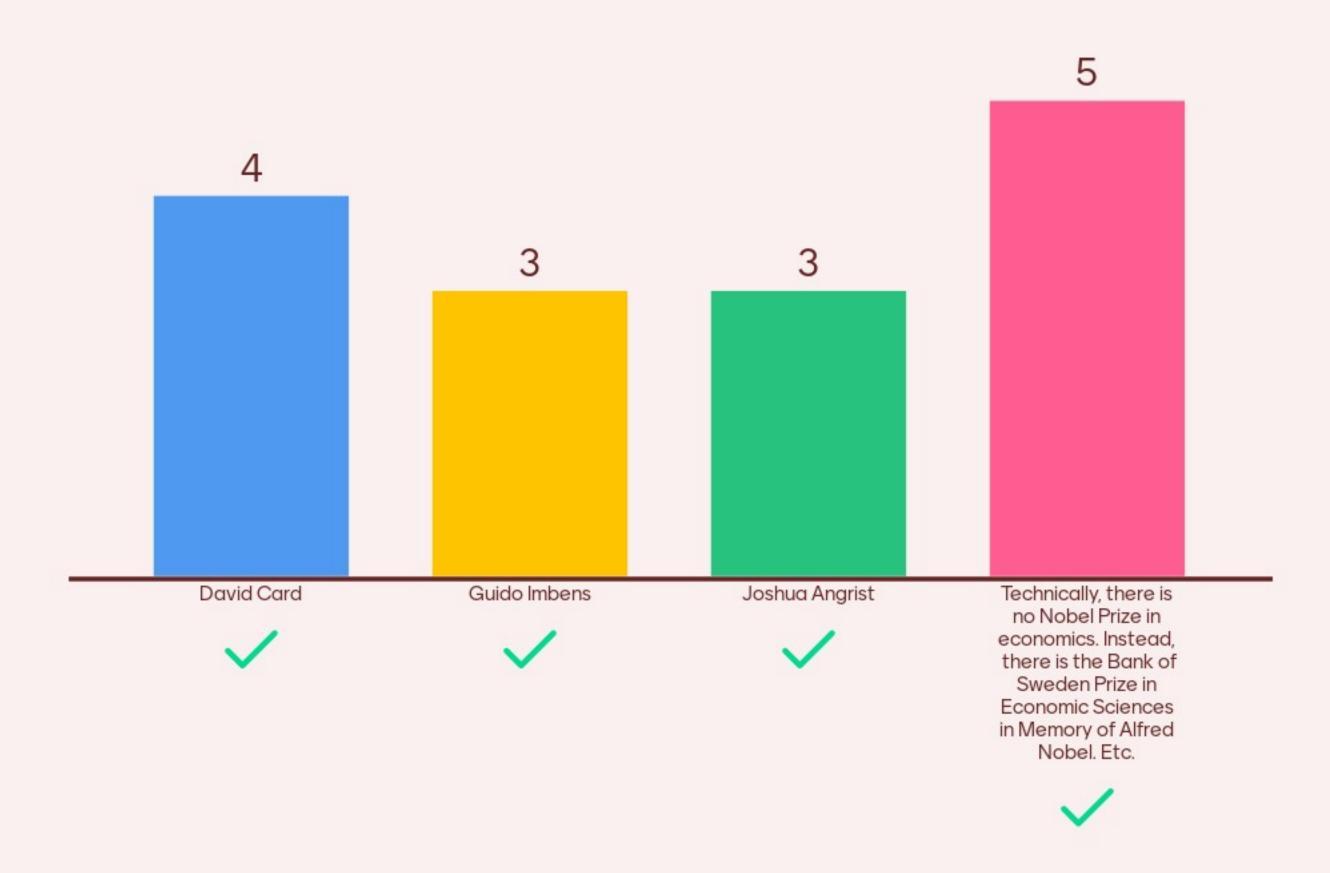
- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- This course
 - Learn about advanced tools and techniques important for spatial economics
 - → No theory an applied course!

Do not hesitate to ask questions during the class!

- Notation on slides
 - Most important concept are <u>underlined</u>
 - Questions (via Menti), exercises and applications
 - → On red slides

Test question: Who won the nobel prize in Economics in 2021? (multiple answers may be correct)



1. Introduction

- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2021

III. Niklas Elmehed © Nobel Prize Outreach.

David Card

"for his empirical contributions to labour economics"

III. Niklas Elmehed © Nobel Prize Outreach.

Joshua D. Angrist

III. Niklas Elmehed © Nobel Prize Outreach.

Guido W. Imbens

"for their methodological contributions to the analysis of causal relationships."

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Today:
 - 1. Spatial econometrics
 - 2. Discrete choice
 - 3. Identification
- Tomorrow:
 - 4. Hedonic pricing
 - 5. Quantitative spatial economics

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

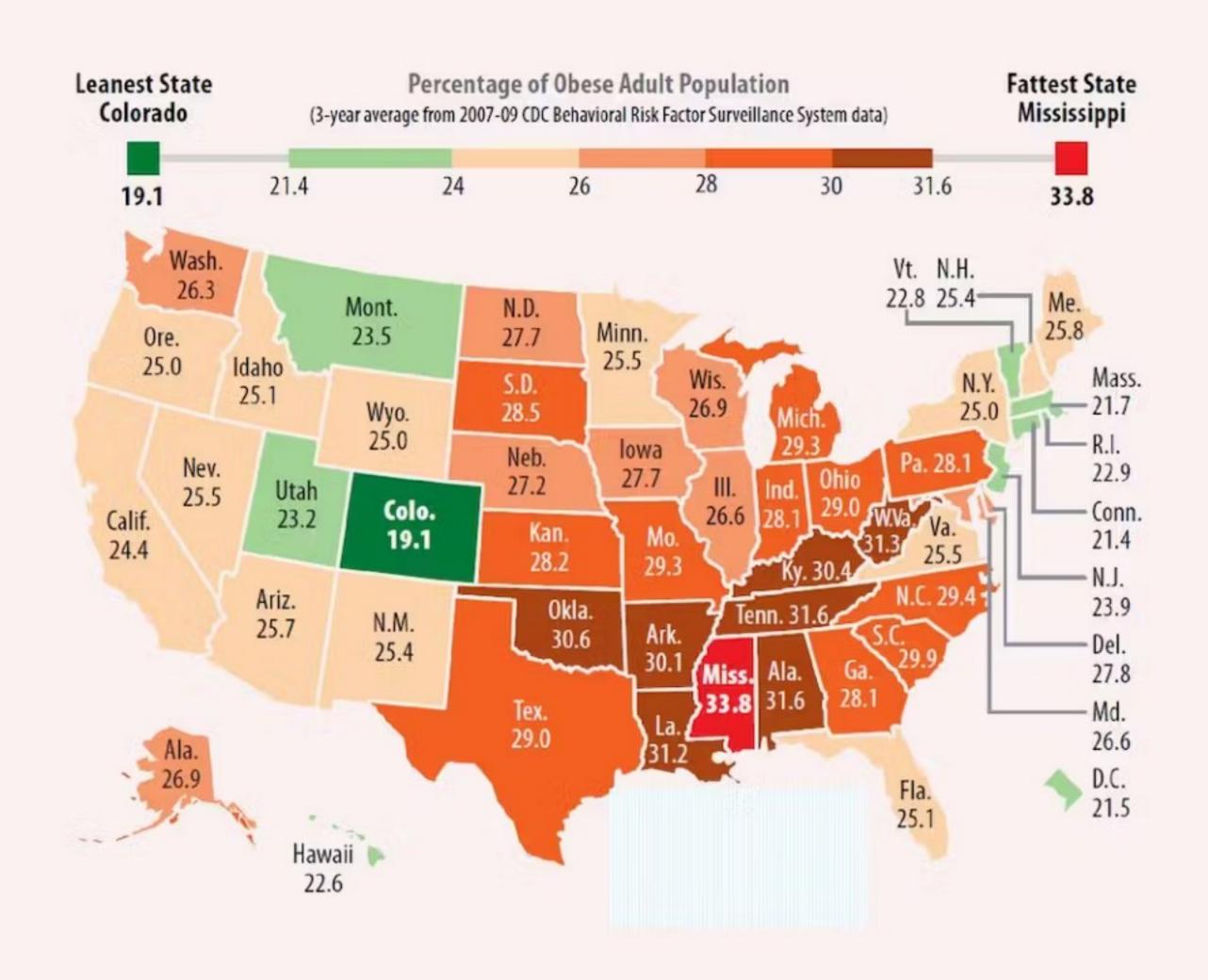
Today:

- 1. Spatial econometrics
 - Spatial data, autocorrelation, spatial regressions
- 2. Discrete choice
 - Random utility framework, estimating binary and multinomial regression models
- 3. Identification
 - Research design, IV, OLS, RDD, Quasi-experiments

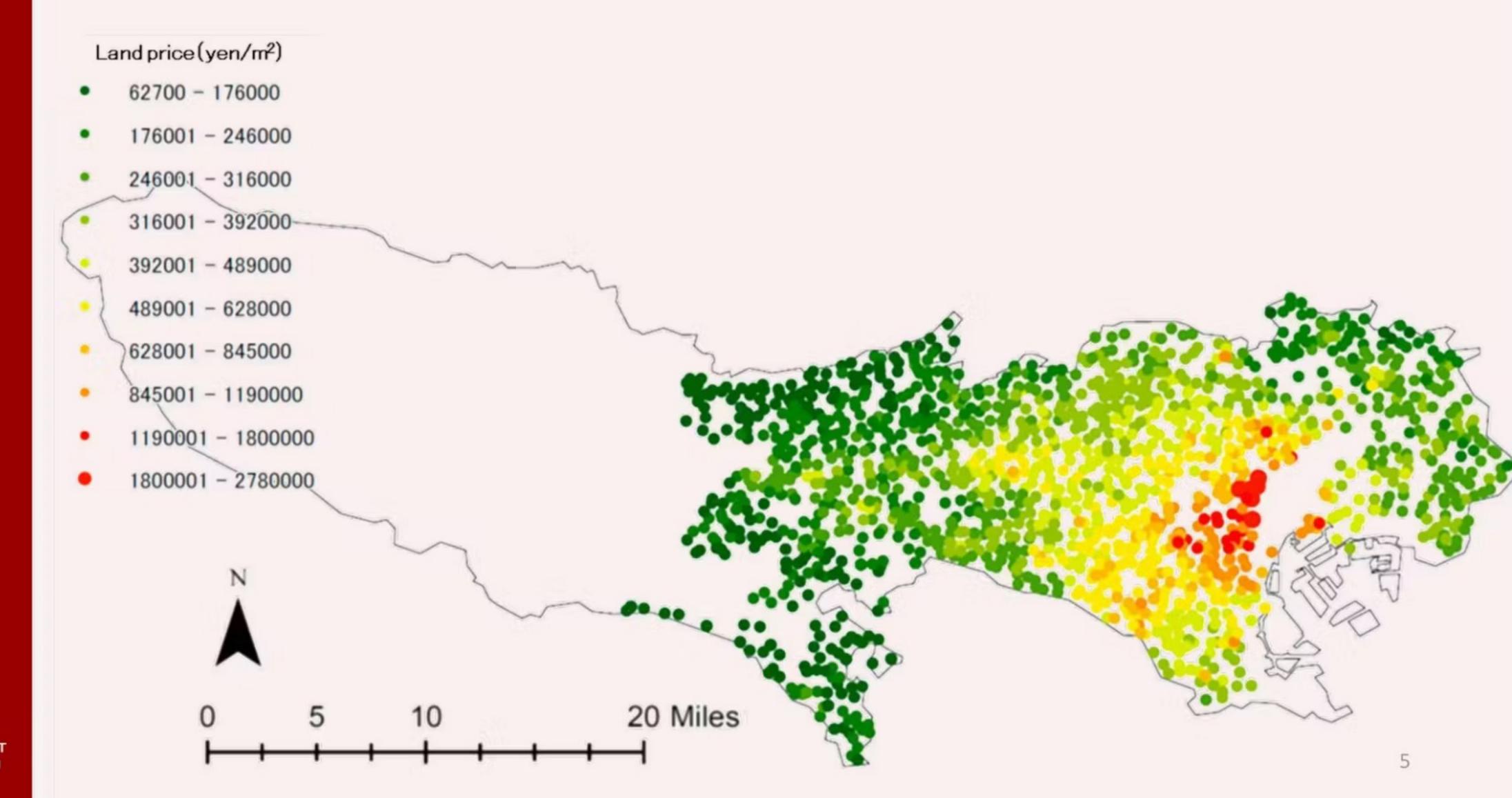
Tomorrow:

- 4. Hedonic pricing
 - Theory and estimation
- 5. Quantitative spatial economics
 - General equilibrium models in spatial economics

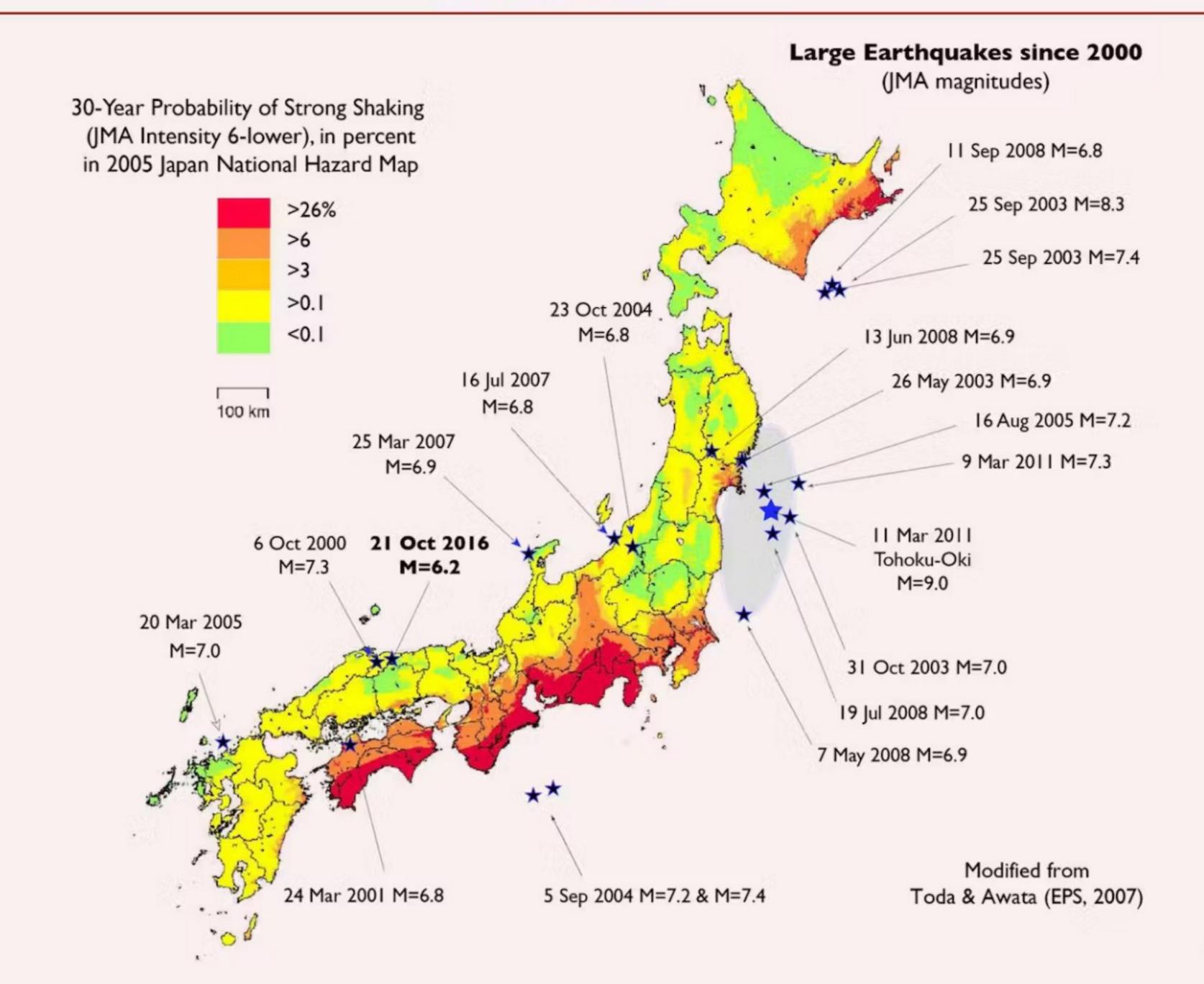
- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- What is special about spatial data?
- Not only time component, but also spatial component:

$$y_{t,i} = \beta x_{t,i} + \epsilon_{t,i} \tag{1'}$$

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Some remarks on matrix notation

Use bold symbols for vectors

$$\boldsymbol{x} = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{31} \end{bmatrix}$$

Use bold symbols and capitals for matrices

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}$$

Identity matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\rightarrow IX = X$$

• Inverse X^{-1} is matrix equivalent of 1/x $\rightarrow X^{-1}X = XX^{-1} = I$

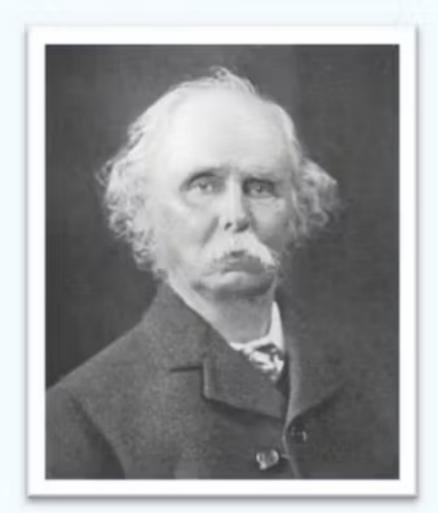
- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

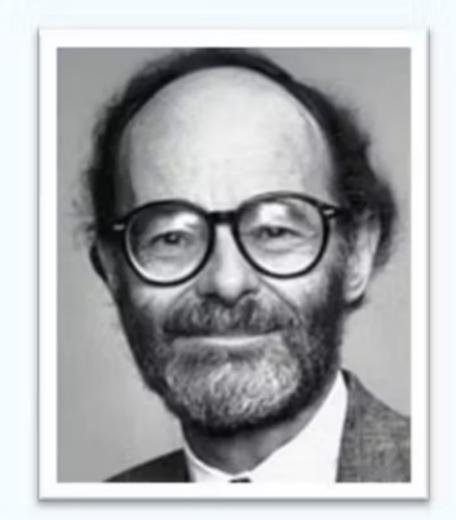
- Many economic processes are spatially correlated
 - Tobler's first law of geography
- Most economics models are "topologically invariant"
- New economic fields have emerged
 - Urban economics
 - New economic geography (NEG)
- Synergy with other fields
 - **Economic geography**
 - Regional science
 - GIS

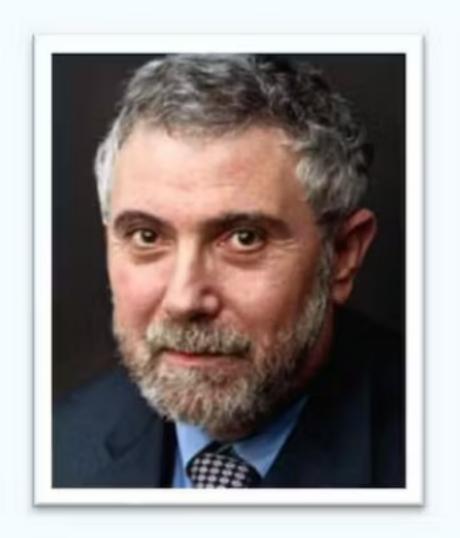
2. Space in economics

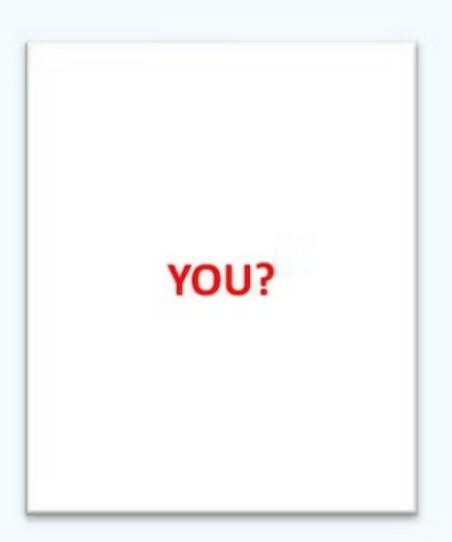
- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Economists and space









- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Spatial econometrics
- 40-50s mainly domain of statisticians
- Cliff and Ord (1973): "Spatial autocorrelation"
- Paelinck and Klaassen (1979): "Spatial Econometrics"
- Rapid growth since Anselin (1988)
- New estimators, tests and interpretation
 - e.g. Kelejian and Prucha (1998, 1999, 2004, 2007, 2010)

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Spatial modelling is becoming increasingly important
 - New and geo-referenced data
 - Advanced software
 - New methods and regression techniques!

2. Space in economics

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Time is simple
 - Natural origin
 - No reciprocity
 - Unidirectional

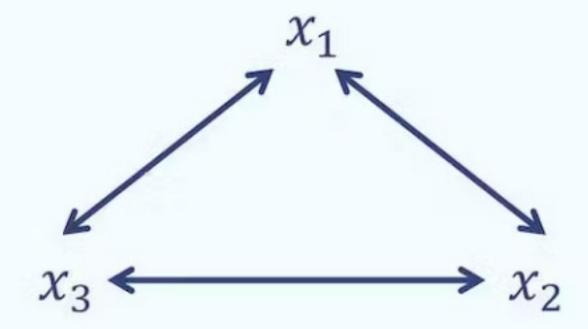
$$x_{t-3} \rightarrow x_{t-2} \rightarrow x_{t-1} \rightarrow x_t$$

- Linear space (e.g. beach) is different
 - No natural origin
 - Reciprocity
 - Unidirectional

$$x_1 \leftrightarrow x_2 \leftrightarrow x_3 \leftrightarrow x_4$$

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- <u>Two-dimensional space</u> becomes even more complex
 - No natural origin
 - Reciprocity
 - Multidirectional



• i = 1,2,3 can refer to point data, areas, grids

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

 First, we have to define the spatial structure of the data

Specified through a <u>spatial weights matrix</u>

- Spatial weights matrix W:
 - Consists of $n \times n$ elements
 - Discrete or continuous elements

- How to define weights?
 - Euclidian distance
 - Network distance
 - Spatial interactions
 - Social networks

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

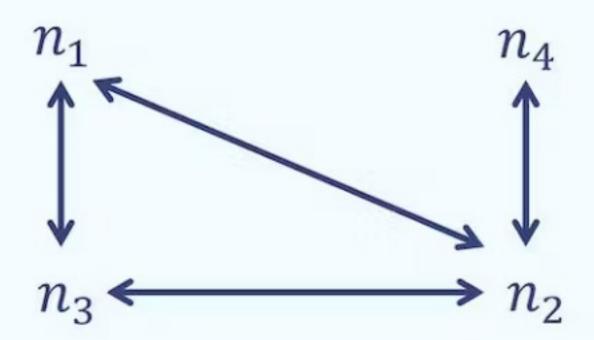
How to define spatial matrices?

- Contiguity matrix
 - Adjacent → 1st order contiguous
 - Neighbours of neighbours → 2nd order contiguous

- Distance matrix
 - k-nearest neighbours
 - Inverse distance weights (1/distance)
 - Cut-off distance

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Let's provide an example of a <u>contiguity matrix</u>



to

	W	n_1	n_2	n_3	n_4
from	n_1	0	1	1	0
	n_2	1	0	1	1
	n_3	1	1	0	0
	n_4	0	1	0	0

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Matrices can be standardised
 - Different principles can be used
 - Most common: row-standardisation:

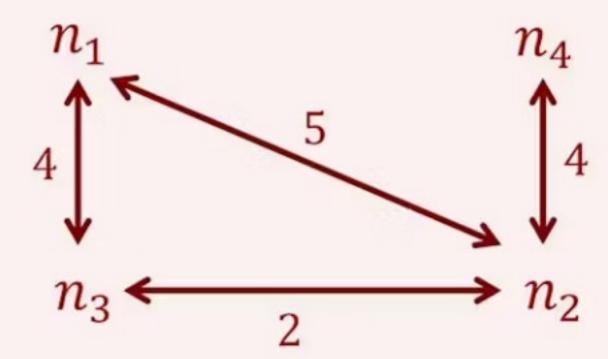
$$w_{ij}^* = \frac{w_{ij}}{\sum_{k=1}^n w_{ik}}$$

where k are other locations

- Interpretation of
 - $\sum_{j=1}^{n} w_{ij}$: sum of connections to neighbours
 - w_{ij}^* denotes the share of connections to neighbours

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Create an inverse distance weight matrix with row-standardised weights



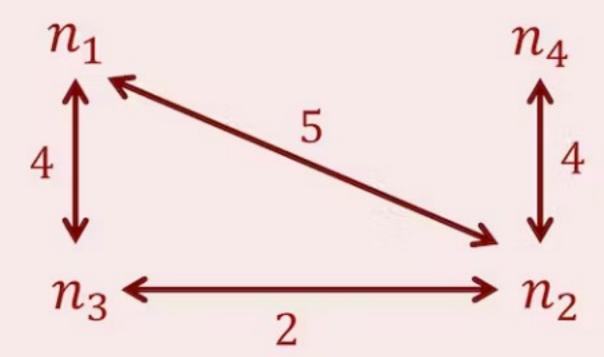
to

from	W	n_1	n_2	n_3	n_4
	n_1				
	n_2				
	n_3				
	n_4				

Create an inverse distance weight matrix with row-standardised weights

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Create an inverse distance weight matrix with row-standardised weights

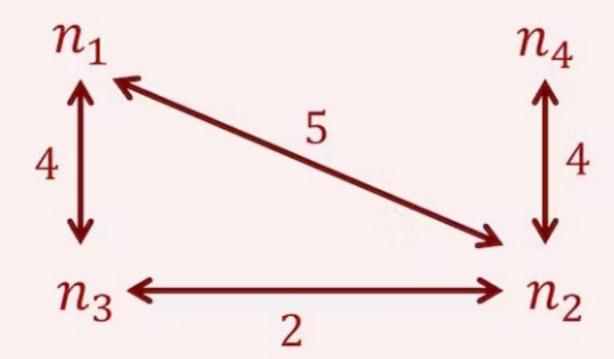


to

	W	n_1	n_2	n_3	n_4
trom	n_1	0	$\frac{1/5}{1/5 + 1/4 + 1/9}$	$\frac{1/4}{1/5 + 1/4 + 1/9}$	$\frac{1/9}{1/5 + 1/4 + 1/9}$
	n_2	$\frac{1/5}{1/5 + 1/2 + 1/4}$	0	$\frac{1/2}{1/5 + 1/2 + 1/4}$	$\frac{1/4}{1/5 + 1/2 + 1/4}$
	n_3	$\frac{1/4}{1/4 + 1/2 + 1/6}$	$\frac{1/2}{1/4 + 1/2 + 1/6}$	0	$\frac{1/6}{1/4 + 1/2 + 1/6}$
	n_4	$\frac{1/9}{1/9 + 1/4 + 1/6}$	$\frac{1/4}{1/9 + 1/4 + 1/6}$	$\frac{1/6}{1/9 + 1/4 + 1/6}$	0

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Create an *inverse* distance weight matrix with row-standardised weights



to

from	W	n_1	n_2	n_3	n_4
	n_1	0	0.36	0.45	0.20
	n_2	0.21	0	0.53	0.26
	n_3	0.27	0.55	0	0.18
	n_4	0.21	0.47	0.32	0

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

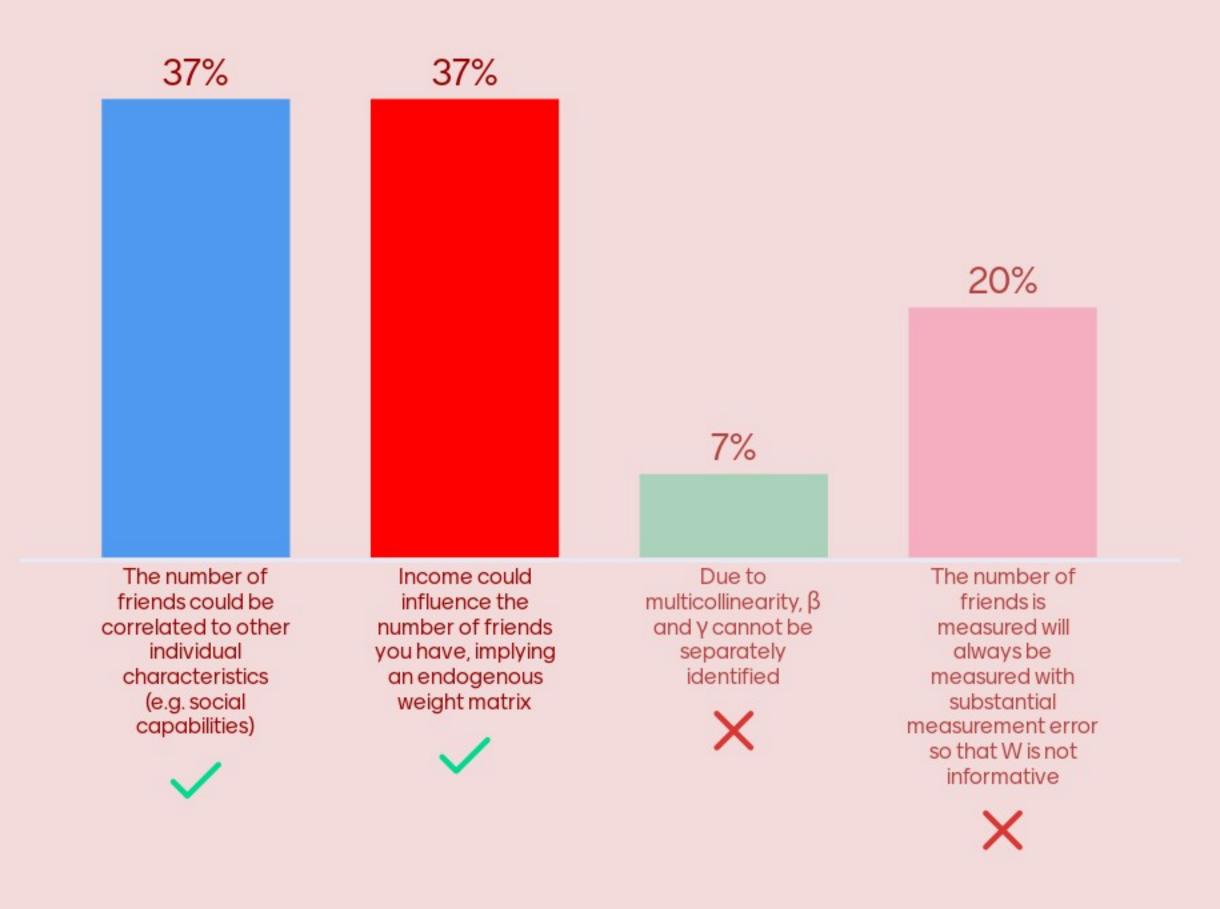
Let's say you aim to create a spatial weight matrix

→ What could be a problem with the following weight matrix?

$$y = \beta e + We'\gamma + \epsilon$$
 (3)
 $y = \text{income}; e = \text{education}$

Say that W depends on the number of friends you have

What could be a problem with: $\mathbf{y}=\beta\mathbf{e}+\mathbf{W}\mathbf{e}'\gamma+\varepsilon$, where \mathbf{W} depends on the number of friends?



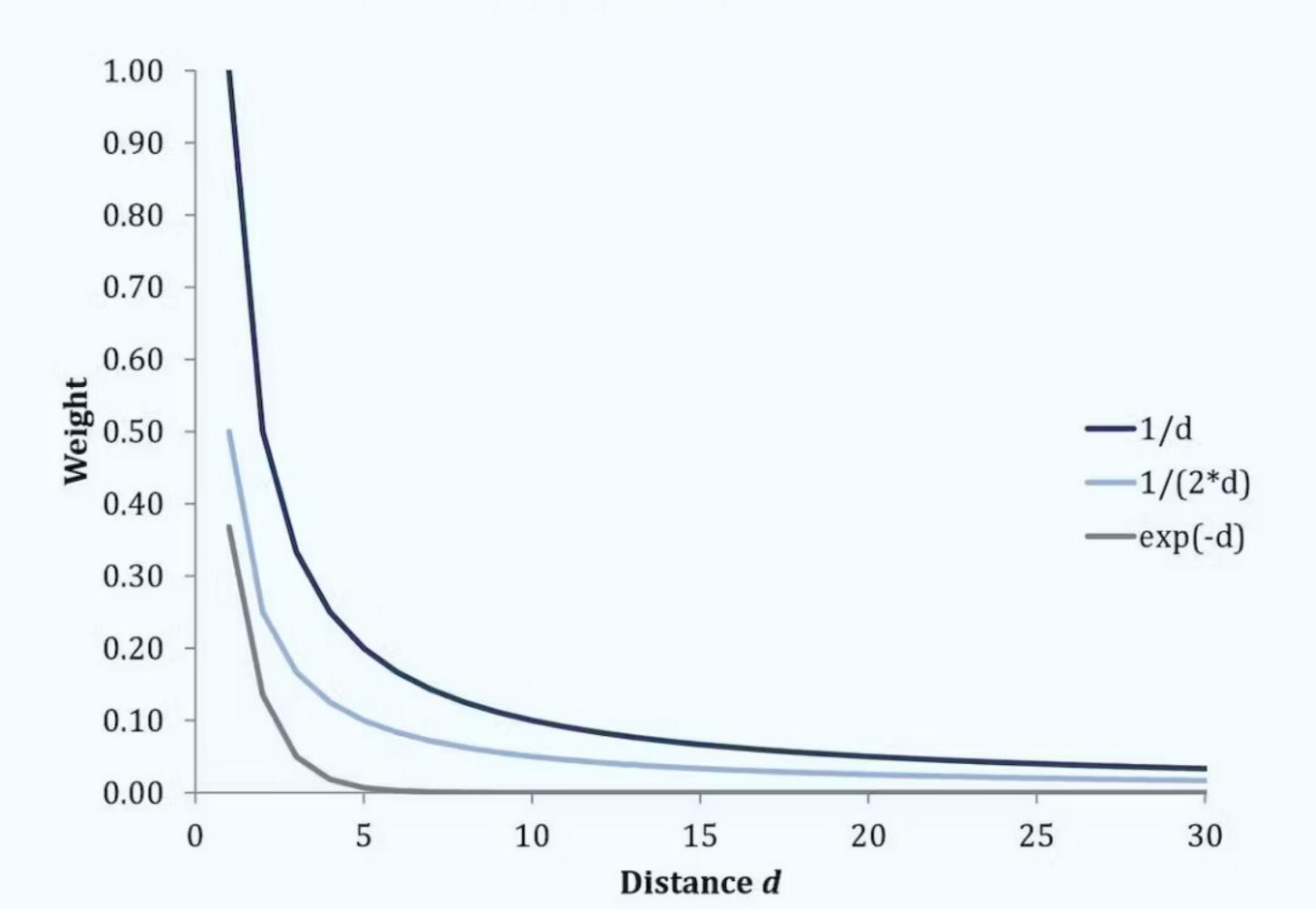
- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Remarks regarding <u>distance weight matrices</u>
 - Check for exogeneity of matrix
 - Connectivity
 - Symmetry
 - Standardisation
 - Distance decay

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Choice of distance decay is arbitrary

- Sometimes theory may help
- May also try to find the optimal decay parameter empirically



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

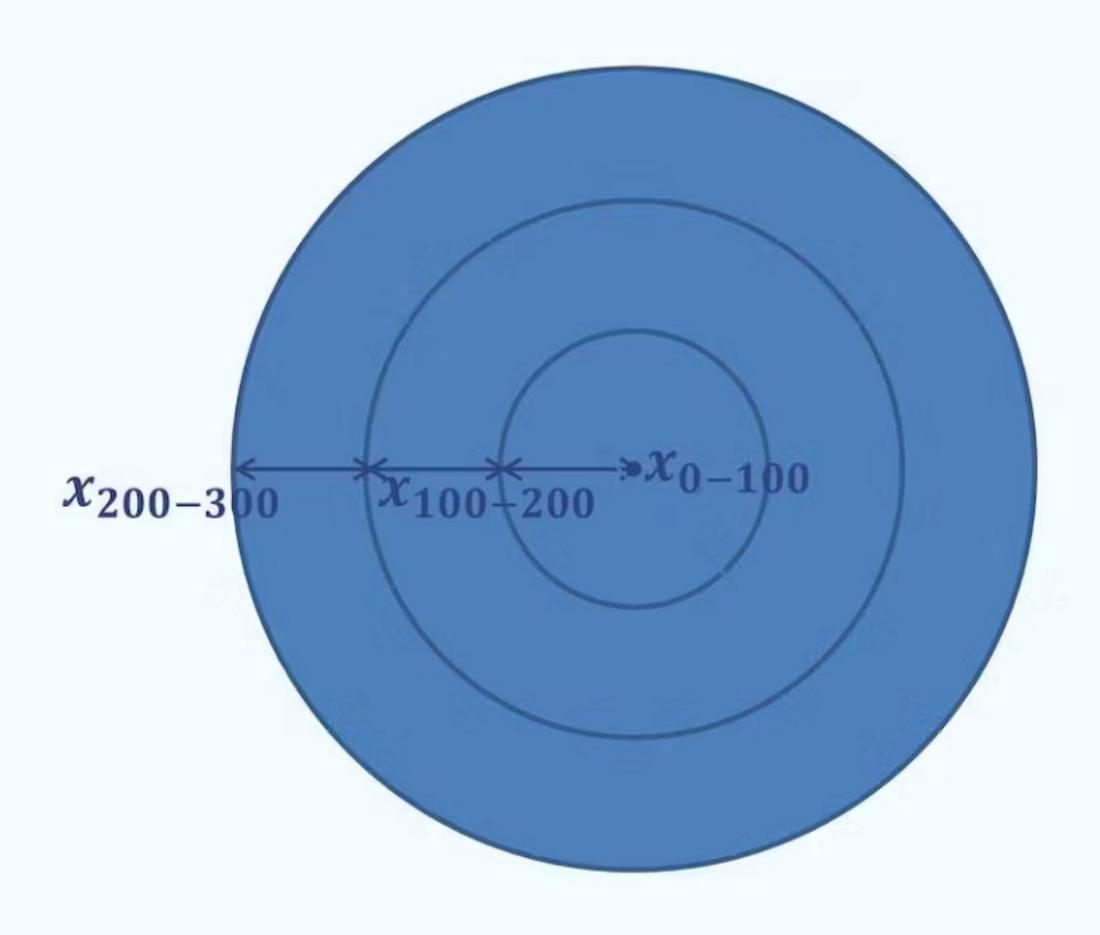
- Choice of distance decay is arbitrary
 - An alternative is to forget about specifying W
 - Alternatively, use different x-variables capturing concentric rings
 - Average of x-variable for different distance bands

3. Spatial data structure

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Choice of distance decay is arbitrary

e.g.
$$y = \alpha x_{0-100} + \beta x_{100-200} + \gamma x_{200-300} + \epsilon$$



- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- How to define spatial weight matrix using software
 - SPATWMAT in STATA, based on geographic coordinates
 - SPWEIGHT in STATA
 - Geoda
 - SPATIAL STATISTICS TOOLBOX in ArcGIS
 - SPDEP in R
- Concentric rings should be calculated manually

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- Usually we do not have space-continuous data
 - 'Dots' to 'boxes'

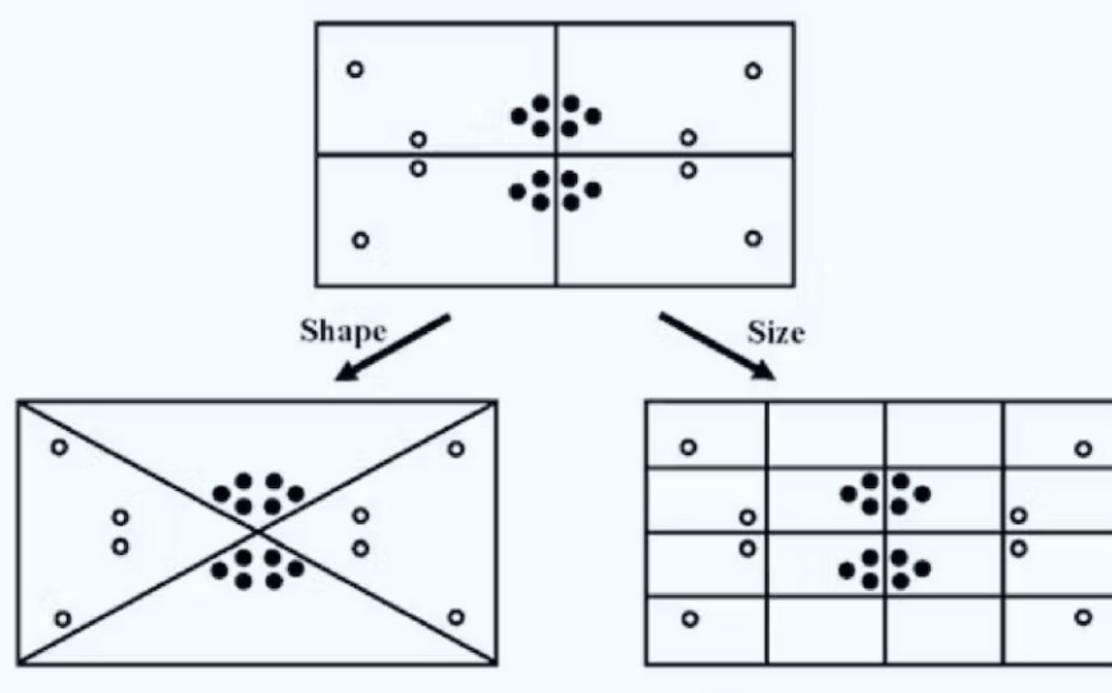
- Data is aggregated at
 - Postcode areas
 - Municipalities
 - Regions
 - Countries

- Problems:
 - Aggregation is often arbitrary
 - Areas are not of the same size

- This may lead to distortions
 - Modifiable areal unit problem (MAUP)

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

An illustration:



O: one unskilled, productivity = y

 \bullet : one skilled, productivity = y > y

Briant, Combes and Lafourcade (2010, JUE)

Aggregation seems to be important!

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

Briant et al. (2010) investigate whether choice matters for regression results

- 1. Introduction
- 2. Space in economics
- 3. Spatial data structure
- 4. MAUP
- 5. Summary

- MAUP is of secondary importance
 - If y and x are aggregated in the same way
 - Matters more for larger areas (e.g. regions)
 - Use meaningful areas if possible
- Specification issues are much more important

Spatial econometrics (2)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Spatial autocorrelation between values
 - Implies $cov(x_i, x_j) = E[x_i x_j] E[x_i] \cdot E[x_j] \neq 0$
 - Again, j refers to other locations

- Spatial autocorrelation, dependence, clustering
 - Fuzzy definitions in literature

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- How to measure spatial autocorrelation
 - Moran's I
 - Focus on one variable x (e.g. crime)

- H₀: independence, spatial randomness
- H_A: dependence
 - On the basis of adjacency, distance, hierarchy

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Moran's I is given by:

$$I = \frac{R}{S_0} \times \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}} \tag{4}$$

where R is the number of spatial units S_0 is the sum of all elements of the spatial weight matrix W is the spatial weight matrix $\tilde{x} = x - \bar{x}$ is a vector with the variable of interest

- Use row-standardised spatial weight matrix W!
 - So that $I_S = \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}}$

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- Recall that $I_S = \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}}$ (standardised I)
 - Note similarity with OLS: $\hat{\beta} = \frac{x'y}{x'x}$
 - Hence: $W\widetilde{x} = \alpha + I\widetilde{x} + \epsilon$, where $\alpha = 0$
- Moran's I is correlation coefficient (more or less)
 - $\approx [-1,1]$
 - But: expectation $E[I] = -\frac{1}{N-1}$
- Visualisation
 - Moran scatterplot

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- Sidenote:
 - Please realise that $W\widetilde{x}$ is a vector

•
$$I_S = \frac{\widetilde{x}' W \widetilde{x}}{\widetilde{x}' \widetilde{x}}$$

• W
$$\times \widetilde{x} = W\widetilde{x}$$

$$\begin{bmatrix} 0 & w_{12} & w_{13} \\ w_{21} & 0 & w_{23} \\ w_{31} & w_{32} & 0 \end{bmatrix} \times \begin{bmatrix} \tilde{x}_1 \\ \tilde{x}_2 \\ \tilde{x}_3 \end{bmatrix} = \begin{bmatrix} \cdots \\ \cdots \\ \cdots \end{bmatrix}$$

• Notation:
$$\frac{x'y}{x'x} = x^T y (x^T x)^{-1}$$

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- How to investigate the statistical significance of (4)?

•
$$\frac{I - E[I]}{\sqrt{\text{var}[I]}}$$
 (5)

- However, $\sqrt{\text{var}[I]}$ is difficult to derive
- E[I] = -1/(n-1)
- Assume normal distribution of I to approximate $\sqrt{\text{var}[I]}$ under H_0
- Or: bootstrapping/simulation

See Cliff and Ord (1973) for more details

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Moran's I
- Also possible: correlation to other variables:

$$I_{S} = \frac{\widetilde{\mathbf{x}}' W \widetilde{\mathbf{z}}}{\widetilde{\mathbf{x}}' \widetilde{\mathbf{x}}}$$

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- How to calculate Moran's I using software
 - SPAUTOC in STATA
 - SPLAGVAR in STATA
 - SPATIAL STATISTICS TOOLBOX in ArcGIS

- Alternative: Getis and Ord's G
 - Most of the time only Moran's I is reported

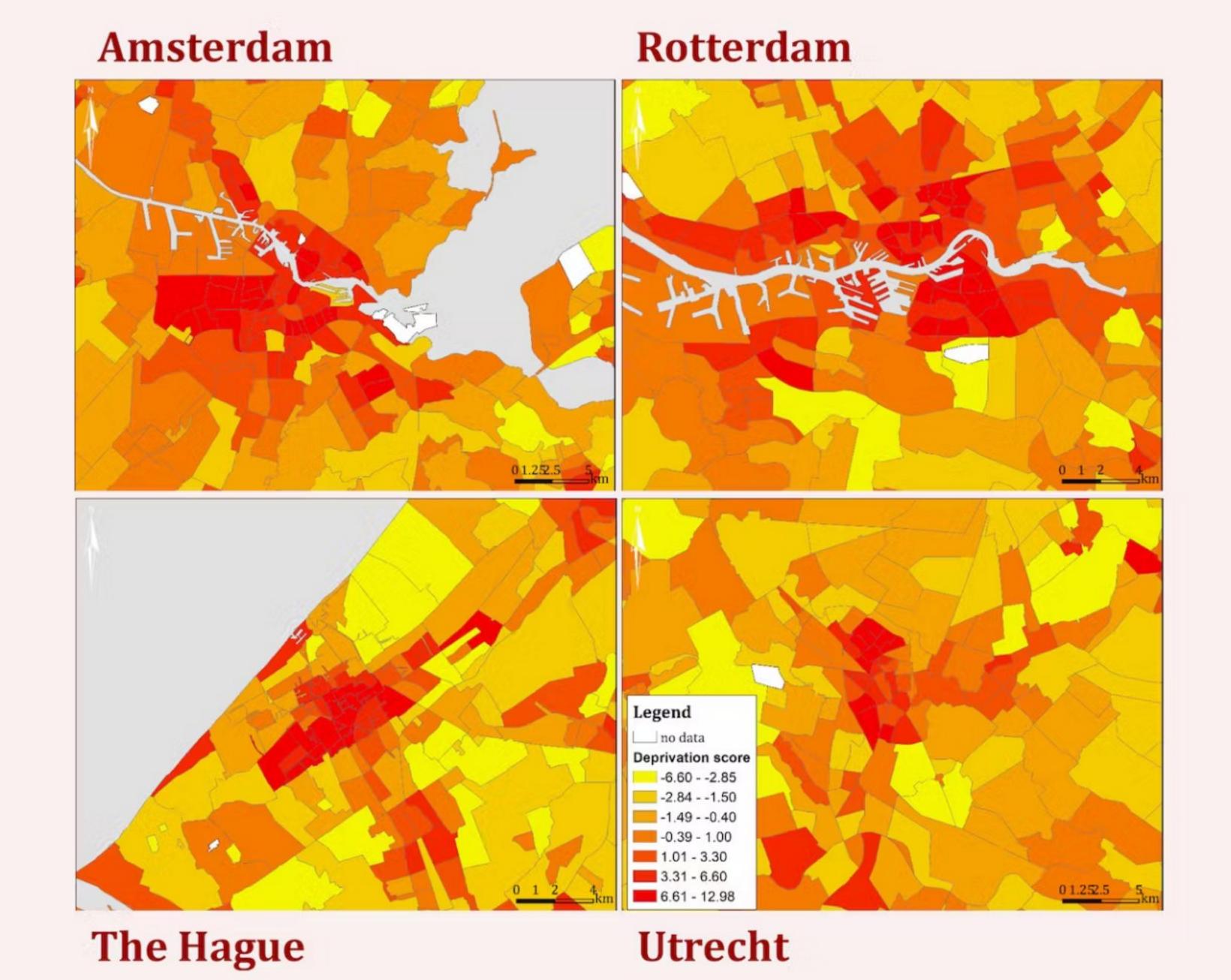
- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Let's try to answer the queston:
 "Is social deprivation spatially clustered?"

• How to determine the most deprived neighbourhoods?

- Dutch government calculated deprivation zscore for each neighbourhood
 - Based on housing quality, safety, perception and satisfaction
 - Important: the 83 most deprived neighbourhoods were selected for an investment of >€1 billion

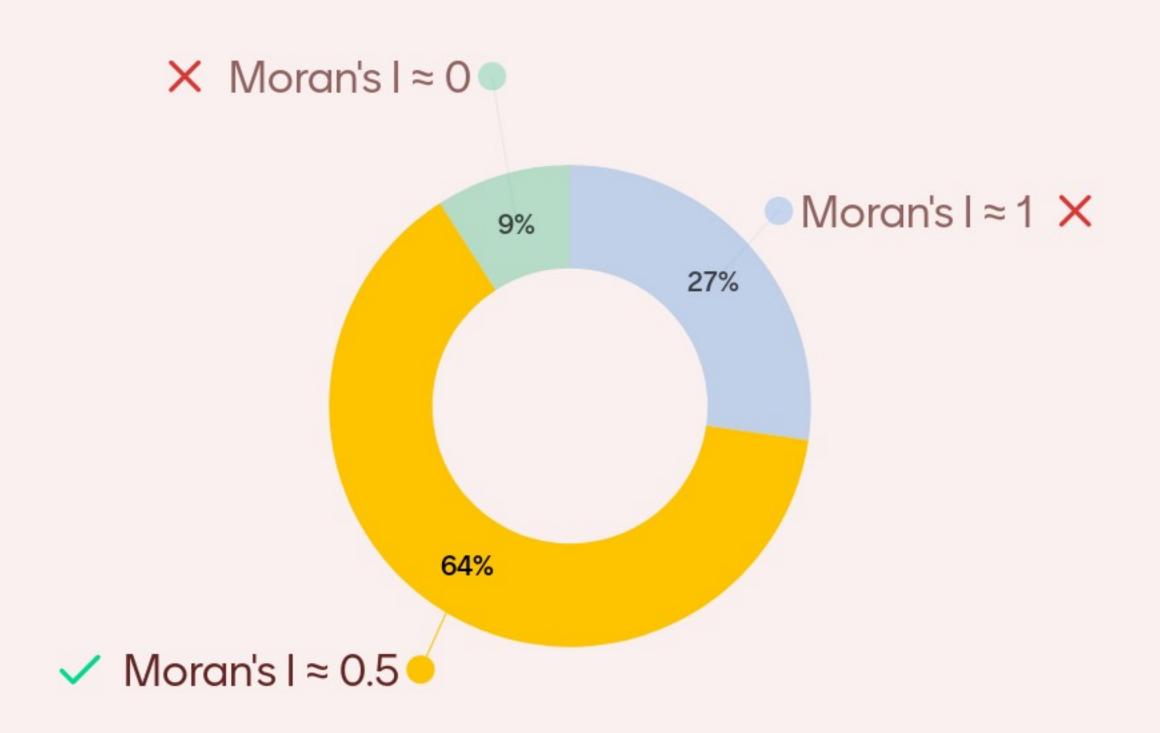
- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Determine <u>spatial autocorrelation</u>
 - 1. Determine distance between all neighbourhoods using centroids
 - 2. Use inverse distance function $w_{ij} = 1/(d_{ij}^{\gamma})$ to determine spatial weights in weight matrix
 - 3. Calculate Moran's I: $W\tilde{z} = \alpha + I\tilde{z} + \epsilon$ where $\tilde{z} = z \bar{z}$ and W is a rowstandardised weight matrix
 - Recall that Wz is a vector
 - 4. Bootstrap this procedure to estimate standard error (or use software)

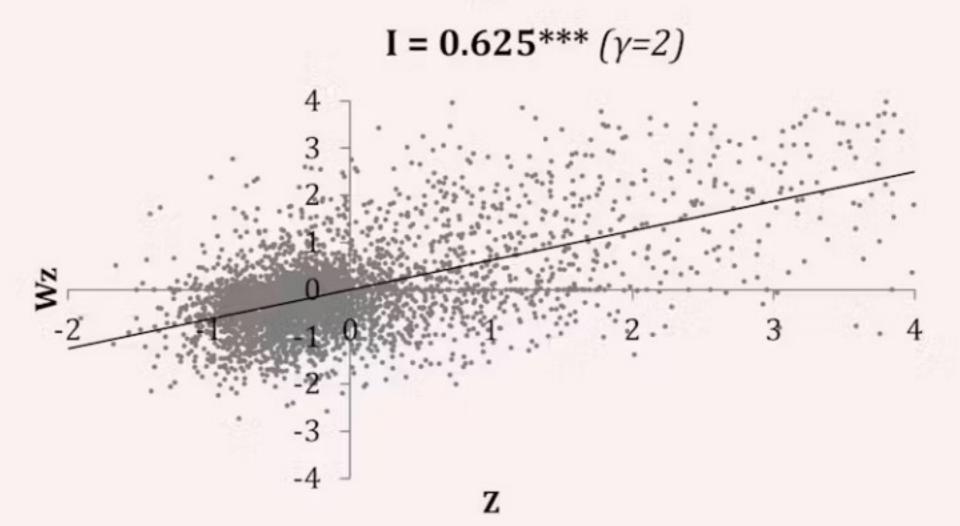
What is your hypothesis when looking at the figure



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Calculate Moran's I
 - Using inverse distance function $w_{ij} = \frac{1}{d_{ij}^{\gamma}}$

$$\mathbf{I} = \mathbf{0.513}^{***} (\gamma = 1)$$
8
6
4
2
1 2 3 4



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Spatial correlation in deprivation
 - Local phenomenon?
 - You do not know why scores are autocorrelated...
 - No causal relationships!

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

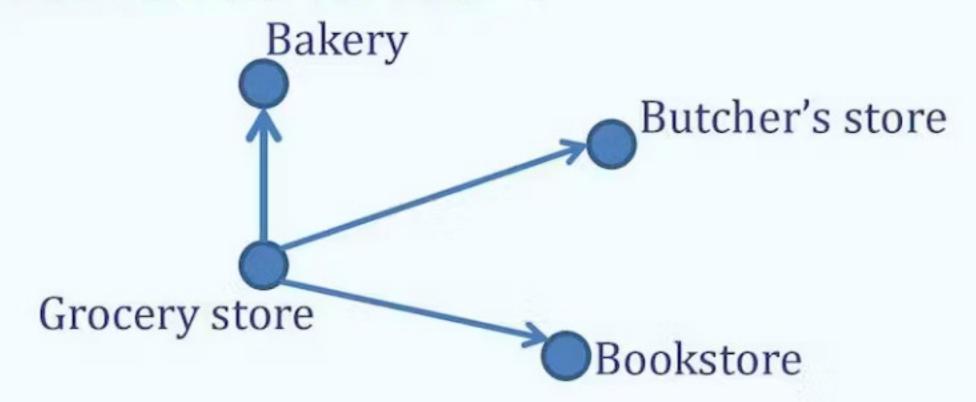
- It is important to make a distinction between global and local spatial autocorrelation
 - See Anselin (2003) for a discussion

- Global spatial autocorrelation
 - Local shock affects the whole system

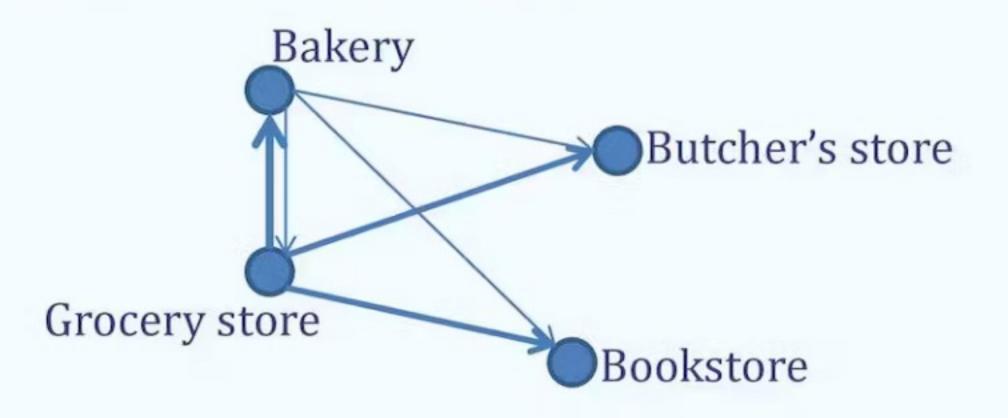
- Local spatial autocorrelation
 - Local shock only affects the 'neighbours'

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Example: Consider an income increase for grocery store owner
- Local autocorrelation:

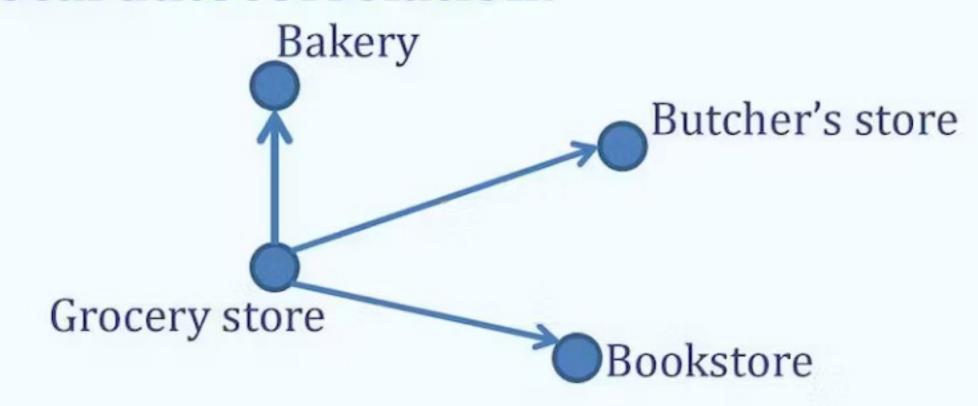


Global autocorrelation:

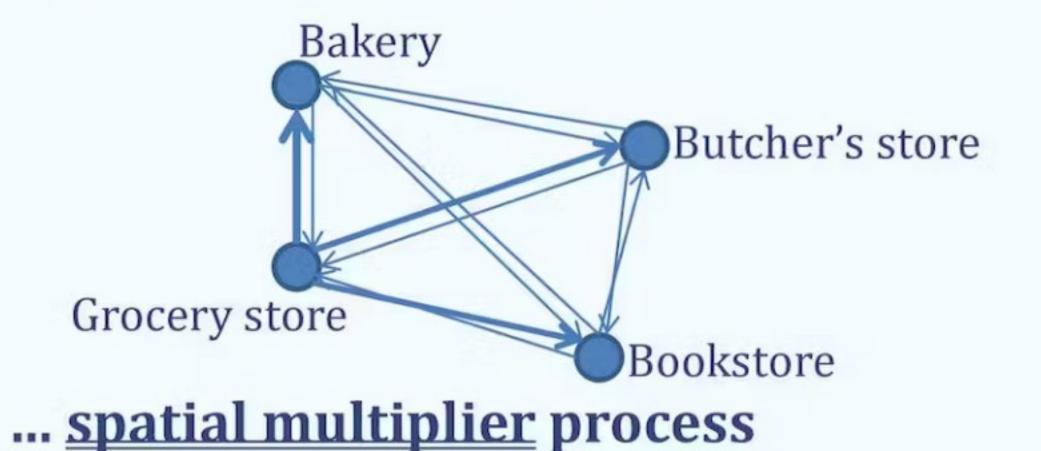


- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Example: Consider an income increase for grocery store owner
- Local autocorrelation:



Global autocorrelation:



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Let's define $z = \lambda Wz + \mu$
 - Reduced-form of z is $z = [I \lambda W]^{-1}\mu$
 - With $\lambda < 1$
- A Leontief expansion yields:

•
$$[I - \lambda W]^{-1} = I + \lambda W + \lambda^2 W^2 + \lambda^3 W^3 + \cdots$$

- $W^2 \rightarrow$ There is an impact of neighbours of neighbours (as defined in W) although it is smaller (λ^2)
 - Global autocorrelation
 - Spatial multiplier process
 - In practice: covariance may approach zero after a relatively small number of powers

What happens when $\lambda>1$ in $\mathbf{z}=\lambda\mathbf{W}\mathbf{z}+\mu$?

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Let's define $z = \lambda W \mu + \mu$
 - This is already a reduced-form of z
- No impact of behaviour beyond 'bands' of neighbours
 - Dependent on definition of W
 - ...Local autocorrelation
- Covariance is zero beyond these bands

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Local or global autocorrelation?
 - Dependent on application
 - Theory...

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Taxonomy:

$$y = \rho W y + X \beta + W X \gamma + \epsilon$$
 (1) with

$$\epsilon = \lambda W \epsilon + \mu \tag{2}$$

W is a row-standardised weight matrix ρ , γ , β , λ are parameters to be estimated

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial lag model

$$\bullet \quad y = \rho W y + X \beta + \mu \tag{3}$$

•
$$\rho \neq 0, \gamma = 0, \lambda = 0$$

Spatial dependence in dependent variables

- Note similarity with time-series models
 - AR Model

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial lag model

$$\bullet \quad \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\mu} \tag{3}$$

- The outcome variable influences everyone (indirectly)
 - Global autocorrelation

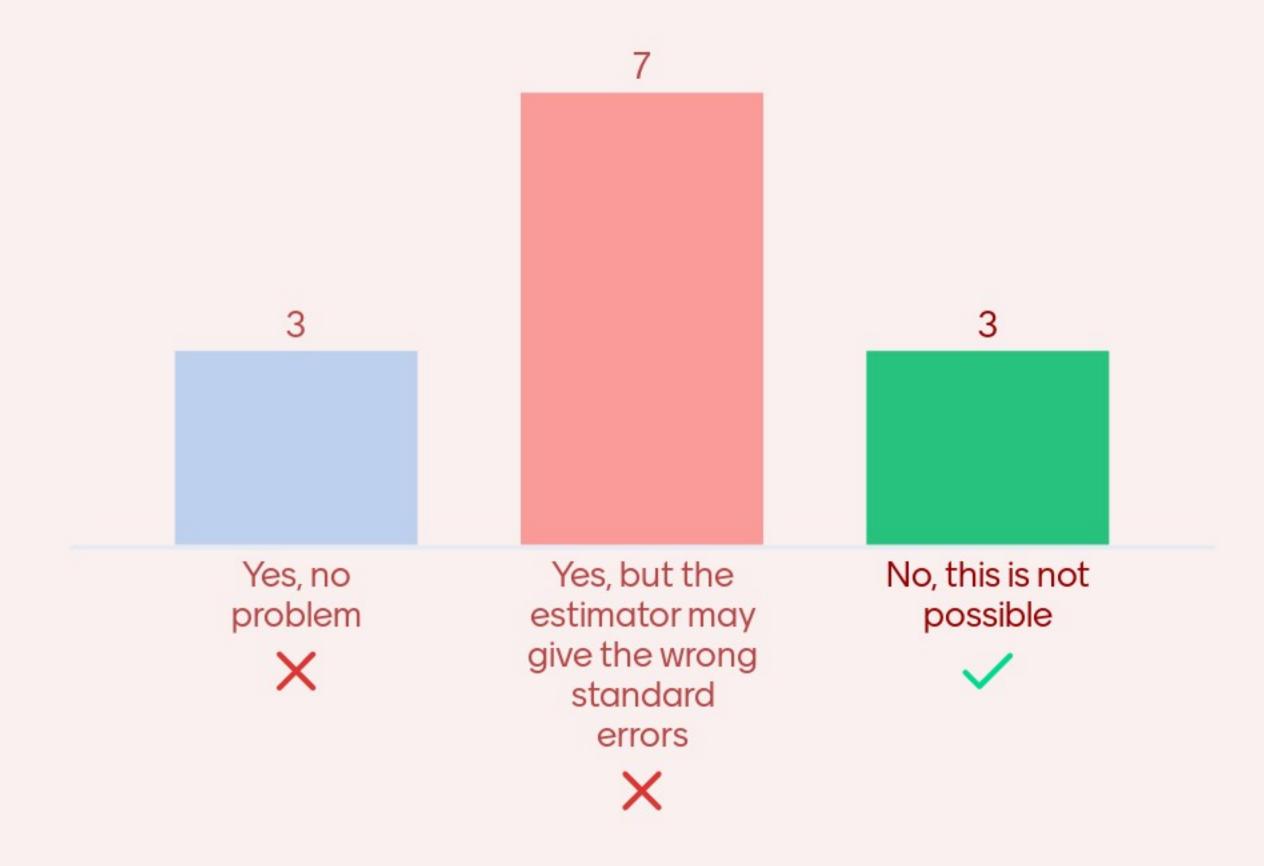
We may write

$$(\mathbf{I} - \rho \mathbf{W})\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$\mathbf{y} = (\mathbf{I} - \rho \mathbf{W})^{-1}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\mu}) \text{ with}$$

$$(\mathbf{I} - \rho \mathbf{W})^{-1} = \mathbf{I} + \rho \mathbf{W} + \rho^2 \mathbf{W}^2 + \rho^3 \mathbf{W}^3 + \cdots$$

Can the spatial lag model $\mathbf{y} = \rho \mathbf{W} \mathbf{y} + X \beta + \mu$ be estimated by OLS?



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial lag model

$$\bullet \quad \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\mu} \tag{3}$$

 We cannot estimate this by OLS because of reverse causality

Recall AR-model:

$$y_t = \rho y_{t-1} + X\beta + \mu_t \tag{4}$$

We can estimate this in principle by OLS because y_{t-1} is not influenced by y_t

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

- Spatial lag model
- Estimate with OLS?
 - Let's simplify (3) to

$$y = \rho W y + \mu$$

(3')

• The estimator for ρ yields:

$$\hat{\rho}_{OLS} = \frac{(Wy)'y}{(Wy)'(Wy)}$$

 \rightarrow Show that $\hat{\rho}_{OLS}$ is biased when $cov(y, \mu) \neq 0$

Consider estimating $\mathbf{y}=\rho\mathbf{W}\mathbf{y}+\mu$ by OLS. Show that ho_{OLS} is biased when $\mathrm{cov}(\mathbf{y},\mu)\neq 0$.

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial lag model

- Estimate with OLS?
 - Let's simplify (3) to

$$y = \rho W y + \mu$$

(3')

• The estimator for ρ yields:

$$\hat{\rho}_{OLS} = \frac{(Wy)'y}{(Wy)'(Wy)}$$

• If we plug-in (3') we get:

$$\hat{\rho}_{OLS} = \frac{(Wy)'(\rho Wy + \mu)}{(Wy)'(Wy)}$$

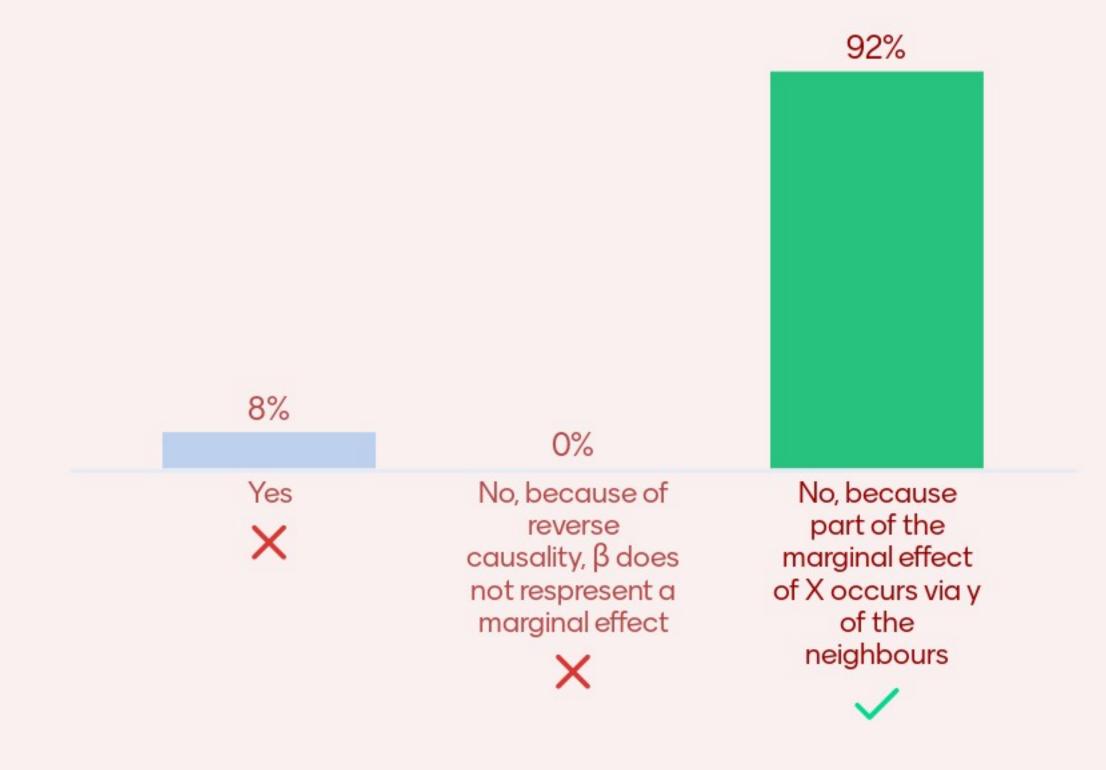
$$\hat{\rho}_{OLS} = \rho + \frac{(Wy)'\mu}{(Wy)'(Wy)}$$

- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial lag model

- Use maximum likelihood (ML) estimator
 - Selects the set of values of the model parameters that maximizes the likelihood function
- Instrumental variables (IV)
 - Instruments for y may be WX and W^2X^2
 - Less efficient than ML, but feasible for 'large' datasets
 - e.g. Kelejian and Prucha (1998)

Assume you use Maximum Likelihood? Does β represent a marginal effect in a spatial lag model $\mathbf{y} = \rho \mathbf{W} \mathbf{y} + X\beta + \mu$.



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

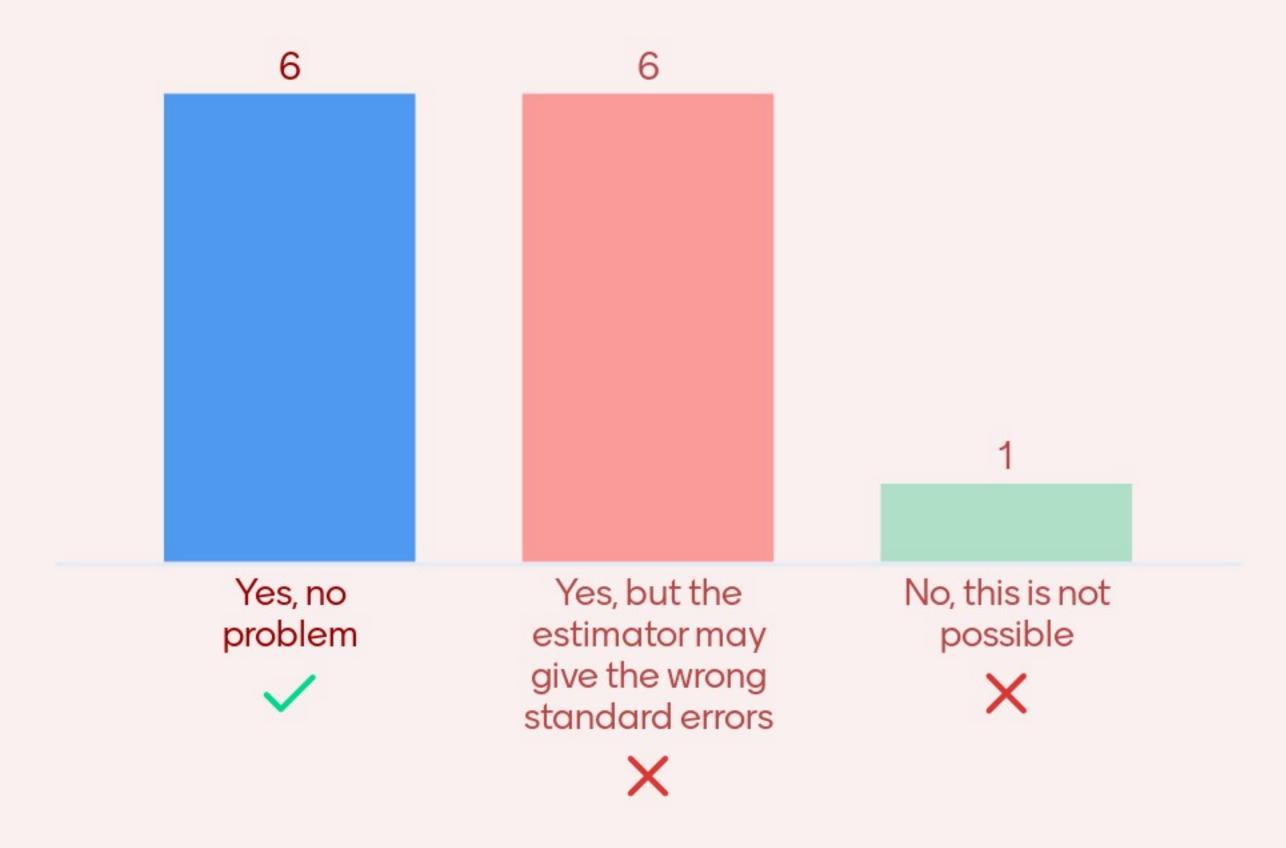
Spatial cross-regressive model

•
$$y = X\beta + \gamma WX + \mu$$

•
$$\rho = 0, \gamma \neq 0, \lambda = 0$$

(5)

Can the spatial cross-regressive model $\mathbf{y} = X\beta + \gamma \mathbf{W} \mathbf{X} + \mu$ be estimated by OLS?



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial cross-regressive model

•
$$y = X\beta + \gamma WX + \mu$$
 (5)

- Include (transformations) of exogenous variables in the regression
 - OLS is fine!

Autocorrelation is local

3. Spatial regressions

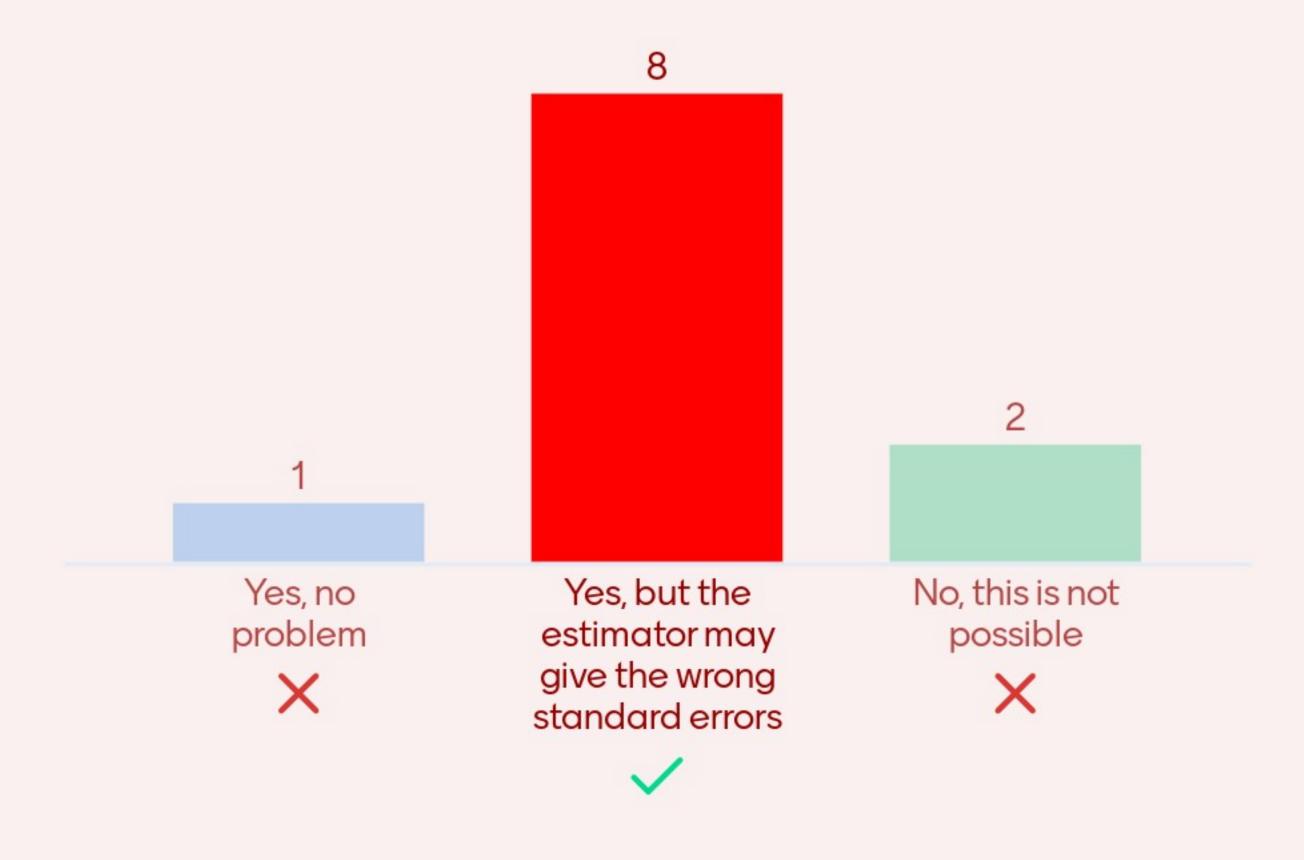
- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial error model

•
$$y = X\beta + \epsilon$$
, with $\epsilon = \lambda W\epsilon + \mu$ (6)

•
$$\rho = 0, \gamma = 0, \lambda \neq 0$$

Can the spatial error model $\mathbf{y} = X\beta + \lambda \mathbf{W}\epsilon + \mu$ be estimated by OLS?



- 1. Introduction
- 2. Spatial autocorrelation
- 3. Spatial regressions
- 4. Summary

Spatial error model

•
$$y = X\beta + \epsilon$$
, with $\epsilon = \lambda W\epsilon + \mu$ (6)

- Omitted spatially correlated variables
 - e.g. Ad-hoc defined boundaries
 - Uncorrelated to X!

- Consistent estimation of parameters β
- But: inefficient
 - ϵ are not i.i.d.
 - Standard errors are higher in OLS
 - β may be different in 'small' samples

Spatial econometrics (3)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

Spatial lag model

$$\bullet \quad \mathbf{y} = \rho \mathbf{W} \mathbf{y} + \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\mu} \tag{3}$$

•
$$\rho \neq 0, \gamma = 0, \lambda = 0$$

Spatial dependence in dependent variables

Spatial cross-regressive model

$$\bullet \quad y = X\beta + \gamma WX + \mu \tag{5}$$

Spatial error model

•
$$y = X\beta + \epsilon$$
, with $\epsilon = \lambda W\epsilon + \mu$ (6)

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Three issues are on the table
 - 1. When should you use these models?
 - 2. Which of the models should you choose?
 - 3. Can we combine these different spatial models?

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

1. When should you use these models?

- Test for spatial effects
 - H₀: No spatial dependence

- Estimate standard OLS, $y = X\beta + \epsilon$
 - Calculate Moran's I using $\hat{\epsilon}$

•
$$I = \frac{R}{S_0} \times \frac{\hat{\epsilon}' W \hat{\epsilon}}{\hat{\epsilon}' \hat{\epsilon}}$$

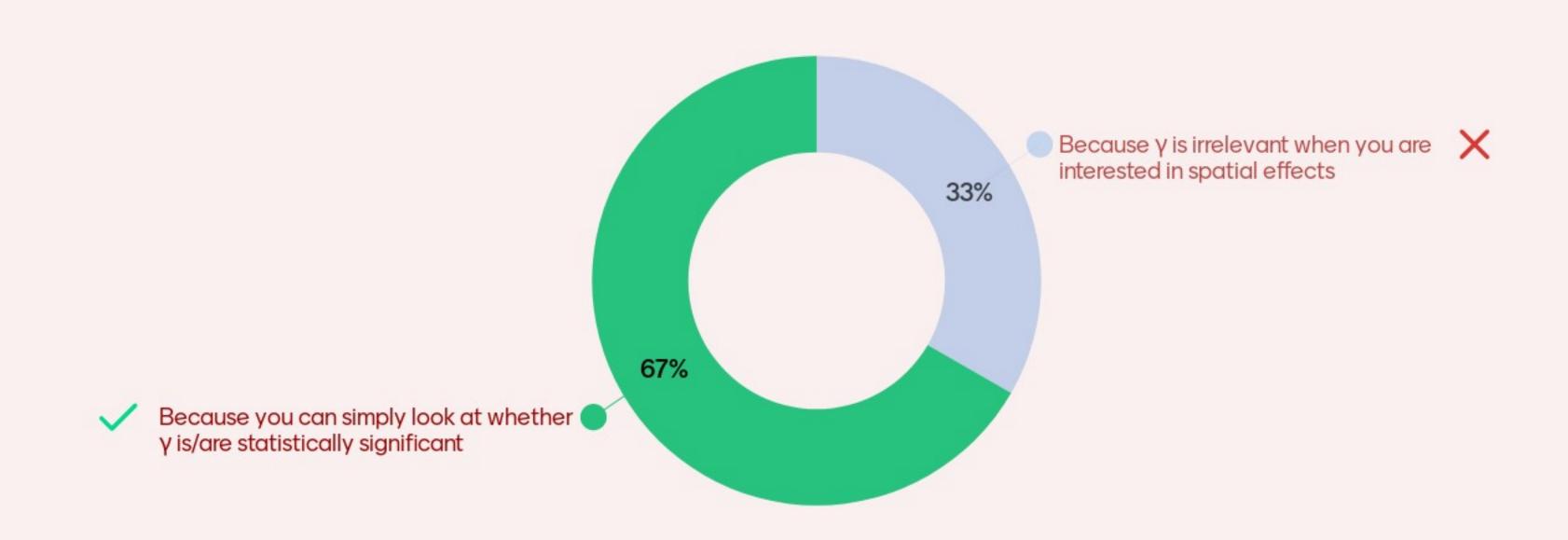
- Moran's I does have a rather uninformative alternative hypothesis
 - H_A: Spatial dependence...

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

1. When should you use these models?

- However,
 - Spatial errors and lags may be correlated
 - May also be both present
- Use <u>robust LM tests</u>
 - LM_{ρ}^{*} adds correction factor for potential spatial error
 - LM_{λ}^{*} adds correction factor for potential spatial lag
 - Complex formulae!

Why may we not discuss a test for the importance of spatial cross-regressive model?



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

3. Can we combine these spatial models?

 In practice, both a spatial lag and spatial error may be present

- How to estimate?
 - Use Kelejian and Prucha's GS2SLS method
 - Three-stage procedure!

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

3. Can we combine these spatial models?

Complicated stuff!

- Let software do the difficult calculations!
 - SPAUTOREG in STATA
 - SPIVREG in STATA

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Gibbons and Overman (2012)
 - "Mostly pointless spatial econometrics?"

• We are interested to identify causal impacts β :

$$y = X\beta + \mu$$

- Typical features of spatial data
 - Unobserved variables correlated with X
 - Omitted variable bias!
 - Large datasets

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

 Tempting to 'fix' omitted variable bias by including a spatial lag

Let's consider again:

$$y = \rho W y + X \beta + \mu$$

Reduced-form:

$$y = \rho W(\rho Wy + X\beta + \mu) + X\beta + \mu$$

$$y = \rho W(\rho W(\rho Wy + X\beta + \mu) + X\beta + \mu) + X\beta + \mu$$
...
$$y = X\beta + WX\rho + W^2X\rho^2 + W^3X\rho^3 + [...] + \widetilde{\mu}$$

... The last equation suggests that in the end y is just a non-linear function of the X-variables

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Reduced-form of spatial lag model ≈ spatial crossregressive model
 - It is hard to prove that the spatial lag model is the 'right' model
 - So, it is hard to distinguish empirically between the two types of models
 - Only when there is a structural (network)
 model, a spatial lag may be appropriate

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- The spatial lag model does not solve the problem of omitted variable bias!
 - Think of real exogenous sources of variation in X to identify β
 - Use instruments or quasi-experiments
 - More discussion on identification strategies in last week!

- Estimate spatial error model?
 - Spatial datasets are typically large
 - Efficiency issues are usually not so important

When would you use spatial econometric techniques (multiple answers can be correct)?

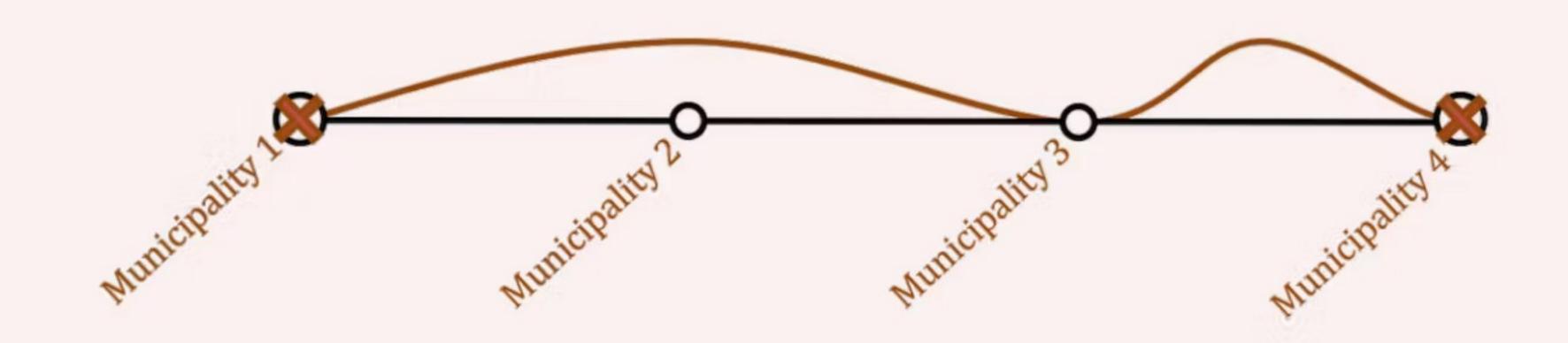
- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

- Why then use spatial econometrics?
 - 1. Exploratory tool to investigate spatial autocorrelation
 - 2. Test for <u>spatial dependence</u> and heterogeneity, also in quasi-experiments and when using instruments
 - 3. Investigate <u>whether results are robust</u> to spatial autocorrelation (using different W)
 - 4. <u>Spatial cross-regressive models are often</u> useful and straightforward to interpret

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

Koster, Tabuchi & Thisse (2022, JoEG)

- Modern economies invest a sizable amount of money into high-speed rail
- We study the impact of high-speed rail stations on 'intermediate' places
- Local policy makers lobby for the opening of a station, but is this a good idea?



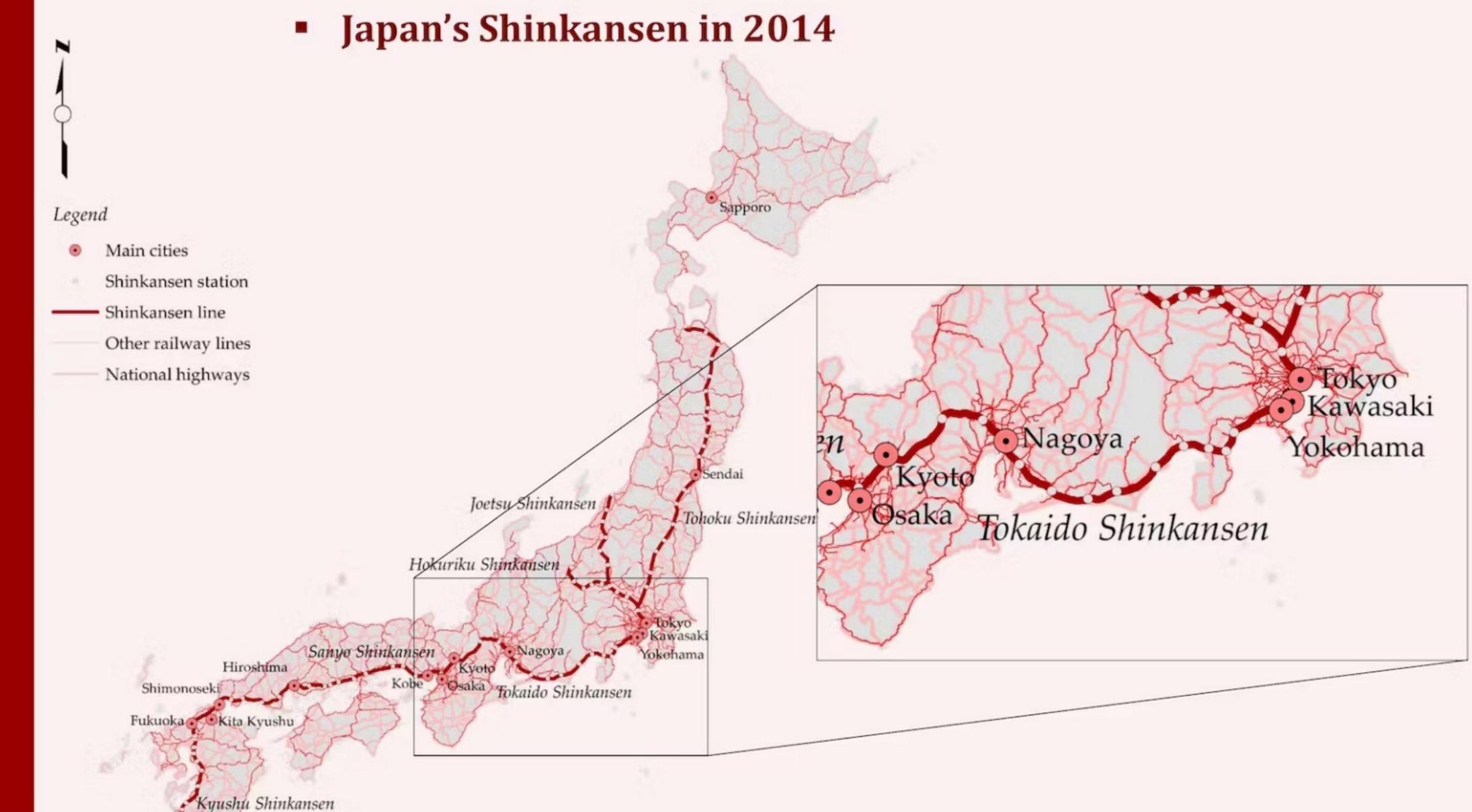
- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

Three potential effects on employment in intermediate places:

- + A better connection reduces the need for firms to locate near large markets with high demand for goods and services
- A better connection to local markets reduces the need to locate near local markets
- When firms start to concentrate in local markets, competition becomes tougher

3. Mostly pointless spatial econometrics?

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary



- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

We estimate the following regression

$$\Delta \log e = \alpha + \beta s + X\gamma + \epsilon$$

where s captures a dummy whether a municipality has a station

With $\Delta \log e = \alpha + \beta s + \mathbf{X}\gamma + \epsilon$, what does β capture?

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

We estimate the following regression

$$\Delta \log e = \alpha + \beta s + X\gamma + \epsilon$$

where s captures a dummy whether a

municipality has a station

- Let us allow for spatial effects
 - e.g. because nearby stations have effects

We therefore extend the baseline equation

$$\Delta \log e = \alpha + \beta_0 s + \beta_1 W s + X \gamma + \epsilon$$

where $\epsilon = \lambda W \epsilon + \mu$ and W is a row-

standardised inverse-distance weight matrix

With $\Delta \log e = \alpha + \beta_0 s + \beta_1 \mathbf{W} s + \mathbf{X} \gamma + \epsilon$, what does β_1 capture?

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

Results

Table 5.1: The opening of a Shinkansen station

(Dependent variable: the log of the change in the employment density between 1957 and 2014)

	(1) OLS Baseline	(2) OLS Spatial cross- regressive model	(3) GS2SLS Spatial error model	(4) GS2SLS Spatial	(5) GS2SLS All spatial effects
Shinkansen station in 2014	-0.2796**	-0.2814**	-0.2034*	-0.2167*	-0.2182*
	(0.1218)	(0.1198)	(0.1233)	(0.1246)	(0.1239)
Spatial effects:					
W- Shinkansen station in 2014		-11.1404***			-2.6923
		(2.8048)			(3.1049)
$\mathbf{W} \cdot \boldsymbol{\epsilon}$			2.0174***		0.3840
			(0.3265)		(0.5581)
W·log∆e				1.2501***	1.2290***
				(0.1878)	(0.2483)
Region fixed effects (8)	Yes	Yes	Yes	Yes	Yes
Number of observations	1,412	1,412	1,412	1,412	1,412
R^2	0.206	0.211			
Pseudo-R ²			0.202	0.225	0.226

Notes: **W** is a row-standardized inverse distance-weight matrix. We exclude municipalities that are centres of metropolitan or micropolitan areas. Robust standard errors are in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

Koster, Tabuchi & Thisse (2022, JoEG)

- The impact of a Shinkansen station reduces employment density by ≈20-25%
 - Hence, a Shinkansen station does not benefit intermediate places
- Spatial cross-regressive model
 - A standard deviation increase in Ws, employment density decreases by 6.8%
 - Ws = the spatially weighted number of Shinkansen stations in nearby municipalities
- Spatial error and lag effects are relevant unrealistically high spatial parameters
 - More importantly, the main effect is hardly influenced by the inclusion of spatial effects

- 1. Introduction
- 2. Spatial regressions
- 3. Mostly pointless?
- 4. Summary

Spatial econometrics:

- Spatial data:
 - No natural origin, reciprocity, multidirectional
 - Define spatial relationships by the spatial weight matrix

- Spatial regressions
 - Spatial lag model
 - Spatial cross-regressive model
 - Spatial error model
 - ... Combine using advanced methods

Spatial econometrics (3)

Applied Econometrics for Spatial Economics

Hans Koster

Professor of Urban Economics and Real Estate

